Anti-inflammatory Activities of Ethylacetate Extract of Rehmannia glutinosa in LPS-induced RAW 264.7 Cells

  • Jin, Chang-Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Young-Man (Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University) ;
  • Kang, Min-Ah (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Yong-Dae (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Dae-Seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Byun, Myung-Woo (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jeong, Il-Yun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 발행 : 2009.08.31

초록

This study is to investigate the anti-inflammatory effects of the ethylacetate extract of Rehmannia glutinosa (RGEAE). The anti-inflammatory activities using nitric oxide (NO), cytokine, and chemokine production in lipopolysaccharide (LPS)-induced RAW 264.7 cells were checked. Results indicated that RGEAE suppressed the NO, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) production in a dose-dependent manner. Inhibition of NO formation was due to a decrease in inducible NOS (iNOS) expression. It was also found that the anti-inflammatory activities of RGEAE resulted from its inhibitory role on the nuclear factor $(NF)-{\kappa}B$ activation and reactive oxygen species (ROS) production. Therefore, it is suggested that RGEAE has potential as a therapeutic material to attenuate the inflammatory disease such as rheumatoid arthritis.

키워드

참고문헌

  1. Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 78: 915-918 (1994) https://doi.org/10.1016/0092-8674(94)90266-6
  2. Mordan LJ, Burnett TS, Zhang LX, Tom J, Cooney RV. Inhibitors of endogenous nitrogen oxide formation block the promotion of neoplastic transformation in C3H10T1/2 fibroblasts. Carcinogenesis 14: 1555-1559 (1993) https://doi.org/10.1093/carcin/14.8.1555
  3. Ohshima H, Bartsch H, Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264 (1994) https://doi.org/10.1016/0027-5107(94)90245-3
  4. Kr$\"{O}$che KD, Fensel K, Kolb-bachofen V. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113: 147-156 (1998) https://doi.org/10.1046/j.1365-2249.1998.00648.x
  5. Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. 39: 191-220 (1999) https://doi.org/10.1146/annurev.pharmtox.39.1.191
  6. Paul PT, Gary SF. NF-$\kappa$B: A key role in inflammatory diseases. J. Clin. Invest. 107: 7-11 (2001) https://doi.org/10.1172/JCI11830
  7. Zhang R-X, Li M-X, Jia Z-P. Rehmannia glutinosa: Review of botany, chemistry, and pharmacology. J. Ethnopharmacol. 117: 199-214 (2008) https://doi.org/10.1016/j.jep.2008.02.018
  8. Lv XF, Meng QY, Guo XM. Effect of Rehmannia glutinosa water extraction on insulin resistance and gene expression of resistin in type 2 diabetes mellitus rats. Zhongguo Zhong Yao Za Zhi 32: 2182-2184 (2007)
  9. Guo LM, Zhang RX, Jia ZP, Li MX, Wang J, Yin Q. Effects of Rehmannia glutinosa oligosaccharides on proliferation of HepG2 and insulin resistance. Zhongguo Zhong Yao Za Zhi 32: 1328-1332 (2007)
  10. Yu HH, Kim YH, Jung SY, Shin MK, Park RK, So HS, Kim KY, Lee DH, You YO. Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells. Am. J. Chin. Med. 34: 1083-1093 (2006) https://doi.org/10.1142/S0192415X06004545
  11. Yu HH, Seo SJ, Kim YH, Lee HY, Park RK, So HS, Jang SL, You YO. Protective effect of Rehmannia glutinosa on the cisplatininduced damage of HEI-OC1 auditory cells through scavanging free radicals. J. Ethnopharmacol. 107: 383-388 (2006) https://doi.org/10.1016/j.jep.2006.03.024
  12. Kim HM, An CS, Jung KY, Choo YK, Park JK, Nam SY. Rehmannia glutinosa inhibits tumour necrosis factor-alpha and interleukin-1 secretion from mouse astrocytes. Pharmacol. Res. 40: 171-176 (1999) https://doi.org/10.1006/phrs.1999.0504
  13. Hwang JH, Choi SY, Ko HC, Jang MG, Jin YJ, Kang SI, Park JG, Chung WS, Kim SJ. Anti-inflammatory effect of the hot water extract from Sasa quelpaertensis leaves. Food Sci. Biotechnol. 16: 728-733 (2007)
  14. Tsai CH, Chang RC, Chiou IF, Liu TS. Improved superoxidegenerating system suitable for the assessment of the superoxidescavanging ability of aqueous extracts fo food constituents using ultraweak chemiluminescence. J. Agr. Food Chem. 51: 58-62 (2003) https://doi.org/10.1021/jf020799t
  15. Gallin JI, Snyderman R. Overview. pp. 1-4. In: Inflammation: Basic Principles and Clinical Correlates. Gallin JI, Synderman R (eds). $3^{rd}$ ed. Lippincott Williams & Wilkins, Philadelphia, PA, USA (1999)
  16. Calixoto JB, Campos MM, Otuki MF, Santos AR. Antiinflammatory compounds of plant origin. Part III. Modulation of pro-inflammatory cytokines, chemokines, and adhesion molecules. Planta Med. 70: 93-103 (2004) https://doi.org/10.1055/s-2004-815483
  17. Haddad JJ. Cytokines and related receptor-mediated signaling pathways. Biochem. Bioph. Res. Co. 297: 700-713 (2002) https://doi.org/10.1016/S0006-291X(02)02287-8
  18. Feldmann M, Brennan FM, Maini R. Cytokines in autoimmune disorders. Int. Rev. Immunol. 17: 217-228 (1998) https://doi.org/10.3109/08830189809084493
  19. Nishimoto N. Interleukin-6 in rheumatoid arthritis. Curr. Opin. Rheumatol. 18: 277-281 (2006) https://doi.org/10.1097/01.bor.0000218949.19860.d1
  20. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, Burdick MD, Pope RM, Strieter RM. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J. Clin. Invest. 90: 772-779 (1992) https://doi.org/10.1172/JCI115950
  21. Kimura K, Ito S, Nagino M, Isobe K. Inhibition of reactive oxygen species down-regulates protein synthesis in RAW 264.7. Biochem. Bioph. Res. Co. 372: 272-275 (2008) https://doi.org/10.1016/j.bbrc.2008.05.036
  22. Lee JH, Choi SI, Lee YS, Kim GH. Antioxidant and antiinflammatory activities of Allium victorialis subsp. Platylphyllum extracts. Food Sci. Biotechnol. 16: 796-801 (2007)
  23. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ. Reactive oxygen species stimulates receptor activator of NF-$\kappa$B ligand expression in osteoblast. J. Biol. Chem. 280: 17497-17506 (2005) https://doi.org/10.1074/jbc.M409332200
  24. Dhar A, Young MR, Colburn NH. The role of AP-1, NF-$\kappa$B, and ROS/NOS in skin carcinogenesis: The JB6 model is predictive. Mol. Cell. Biochem. 234-235: 185-193 (2002) https://doi.org/10.1023/A:1015948505117
  25. Waisundara VY, Huang M, Hsu A, Huang D, Tan BK. Characterization of the anti-diabetcic and anti-oxidant effects of rehmannia glutinosa in streptozotocin-induced diabetic wistar rats. Am. J. Chin. Med. 36: 1083-1104 (2008) https://doi.org/10.1142/S0192415X08006594
  26. Liu HR, Tang XY, Dai DZ, Dai Y. Ethanol extracts of Rehmannia complex (Di Huang) containing no Corni fructus improve early diabetic nephropathy by combining suppression on the ET-ROS axis with modulate hypoglycemic effect in rats. J. Ethnopharmacol. 118: 466-472 (2008) https://doi.org/10.1016/j.jep.2008.05.015
  27. Kim HM, An CS, Jung KY, Choo YK, Park JK, Nam SY. Rehmannia glutinosa inhibits tumour necrosis factor-$\alpha$ and interleukin-1 secretion from mouse astrocytes. Pharmacol. Res. 40: 171-176 (1999) https://doi.org/10.1006/phrs.1999.0504
  28. Kim HM, Lee E, Lee S, Shin T, Kim Y, Kim J. Effect of Rehmannia glutinosa on immediate type allergic reaction. Int. J. Immunopharmacol. 20: 231-240 (1998) https://doi.org/10.1016/S0192-0561(98)00037-X
  29. Arora A, Nair NG, Strasburg GM. Structure activity relationships for antioxidant activities of a series flavonoids in a liposomal system. Free Radical Bio. Med. 24: 1350-1363 (1998)
  30. Moroney MA, Alcaraz MJ, Forder RA, Carey F, Hoult JRS. Selectively of neutrophil 5-LOX and COX inhibition by an antiinflammatory flavonoids glycoside and related aglycone flavonoids. J. Pharm. Pharmacol. 40: 787-792 (1998)
  31. Jiang B, Du J, Liu JH, Bao YM, An LJ. Catalpol attenuates the neurotoxicity induced by beta-amyloid(1-42) in cortical neuron-glia cultures. Brain Res. 1188: 139-147 (2008) https://doi.org/10.1016/j.brainres.2007.07.105