High Pressure Inactivation Kinetics of Salmonella enterica and Listeria monocytogenes in Milk, Orange Juice, and Tomato Juice

  • Xu, Hua (Medical & Biomaterial Research Center and Division of Biomaterials Engineering, Kangwon National University) ;
  • Lee, Hyeon-Yong (Medical & Biomaterial Research Center and Division of Biomaterials Engineering, Kangwon National University) ;
  • Ahn, Ju-Hee (Medical & Biomaterial Research Center and Division of Biomaterials Engineering, Kangwon National University)
  • Published : 2009.08.31

Abstract

Effects of pressure come-up and holding times on the inactivation of Salmonella enterica and Listeria monocytogenes were evaluated in deionized water, milk, orange juice, and tomato juice with pH 6.76, 6.85, 3.46, and 4.11, respectively. The inoculated samples were subjected to high pressure treatments at 300, 400, and 500 MPa for less than 10 min at $30^{\circ}C$. At 500 MPa, the numbers of S. enterica and L. monocytogenes in deionized water, orange juice, and tomato juice were reduced by more than 6 log CFU/mL during the come-up time. Compared to orange and tomato juices, milk showed a considerable baroprotective effect against S. enterica and L. monocytogenes. At 300 MPa, the D values for S. enterica in milk, orange juice, and tomato juice were 0.94, 0.41, and 0.45 min, while those for L. monocytogenes were 9.56, 1.11, and 0.94 min, respectively. Low pH resulted in a noticeable synergistic effect on the inactivation of S. enterica and L. monocytogenes in orange and tomato juices. Therefore, these results might provide more useful information for designing the entire high hydrostatic pressure (HHP) conditions, taking the come-up time reduction, and food system.

Keywords

References

  1. Matser AM, Krebbers B, van den Berg RW, Bartels PV. Advantages of high pressure sterilisation on quality of food products. Trends Food Sci. Tech. 15: 79-85 (2004) https://doi.org/10.1016/j.tifs.2003.08.005
  2. Moerman F. High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork Marengo, a low acidic particulate food product. Meat Sci. 69: 225-232 (2005) https://doi.org/10.1016/j.meatsci.2004.07.001
  3. Torres JA, Velazquez G. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67: 95-112 (2005) https://doi.org/10.1016/j.jfoodeng.2004.05.066
  4. San Martin MF, Barbosa-Canovas GV, Swanson BG. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. 46: 627-645 (2002)
  5. Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG. Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. LWT-Food Sci. Technol. 30: 703-708 (1997) https://doi.org/10.1006/fstl.1997.0261
  6. Hartmann C, Delgado A. Numerical simulation of thermal and fluiddynamical transport effects on a high pressure induced inactivation. High Pressure Res. 23: 67-70 (2003) https://doi.org/10.1080/0895795031000109652
  7. Solomon EB, Hoover DG. Inactivation of Campylobacter jejuni by high pressure hydrostatic pressure. Lett. Appl. Microbiol. 38: 505-509 (2004) https://doi.org/10.1111/j.1472-765X.2004.01527.x
  8. Arques JL, Rodriguez E, Gaya P, Medina M, Guamis B, Nunez M. Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. J. Appl. Microbiol. 98: 254-260 (2005) https://doi.org/10.1111/j.1365-2672.2004.02507.x
  9. Erkmen O, Dogan C. Kinetic analysis of Escherichia coli inactivation by high hydrostatic pressure in broth and foods. Food Microbiol. 21: 181-185 (2004) https://doi.org/10.1016/S0740-0020(03)00055-8
  10. Simpson RK, Gilmour A. The resistance of Listeria monocytogenes to high hydrostatic pressure in foods. Food Microbiol. 14: 567-573 (1997) https://doi.org/10.1006/fmic.1997.0117
  11. Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol. -Chicago 43: 99-107 (1989)
  12. Garriga M, Grebol N, Aymerich MT, Monfort JM, Hugas M. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov. Food Sci. Emerg. 5: 451-457 (2004) https://doi.org/10.1016/j.ifset.2004.07.001
  13. Senhaji AF, Loncin M. The protective effect of fat on the heat resistance of bacteria (I). J. Food Technol. 12: 203-216 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb00102.x
  14. Mozhaev VV, Heremans K, Frank J, Masson P, Balny C. Exploiting the effects of high hydrostatic-pressure in biotechnological applications. Trends Biotechnol. 12: 493-501 (1994) https://doi.org/10.1016/0167-7799(94)90057-4
  15. Smelt JPPM. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Tech. 9: 152-158 (1998) https://doi.org/10.1016/S0924-2244(98)00030-2
  16. Tahiri I, Makhlouf J, Paquin P, Fliss I. Inactivation of food spoilage bacteria and Escherichia coli O157:H7 in phosphate buffer and organic juice using dynamic high pressure. Food Res. Int. 39: 98-105 (2006) https://doi.org/10.1016/j.foodres.2005.06.005
  17. Amanatidou A, Schluter O, Lemkau K, Gorris LGM, Smid EJ, Knorr D. Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innov. Food Sci. Emerg. 1: 87-98 (2000) https://doi.org/10.1016/S1466-8564(00)00007-2
  18. Arques JL, Rodriguez E, Gaya P, Medina M, Guamis B, Nunez M. Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. J. Appl. Microbiol. 98: 254-260 (2005) https://doi.org/10.1111/j.1365-2672.2004.02507.x
  19. Garca-Graells C, van Opstal I, Vanmuysen SCM, Michiels CW. The lactoperoxidase system increases efficacy of high-pressure inactivation of foodborne bacteria. Int. J. Food Microbiol. 81: 211-221 (2003) https://doi.org/10.1016/S0168-1605(02)00263-5
  20. Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. Inactivation of Gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Appl. Environ. Microb. 67: 339-344 (2001) https://doi.org/10.1128/AEM.67.1.339-344.2001
  21. Gervilla R, Ferragut V, Guamis B. High pressure inactivation of microorganisms inoculated into bovine milk of different fat contents. J. Dairy Sci. 83: 674-682 (2000) https://doi.org/10.3168/jds.S0022-0302(00)74928-9
  22. Ananta E, Heinz V, Schluter O, Knorr D. Kinetic studies on highpressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov. Food Sci. Emerg. 2: 261-272 (2001) https://doi.org/10.1016/S1466-8564(01)00046-7
  23. Dogan C, Erkmen O. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth. milk. and peach and orange juices. J. Food Eng. 62: 47-52 (2004) https://doi.org/10.1016/S0260-8774(03)00170-5
  24. Riahi E, Ramaswamy HS. High pressure inactivation kinetics of amylase in apple juice. J. Food Eng. 64: 151-160 (2004) https://doi.org/10.1016/j.jfoodeng.2003.09.025
  25. Ramaswamy HS, Riahi E, Idziak E. High-pressure destruction kinetics of E. coli (29055) in apple juice. J. Food Sci. 68: 1750-1756 (2003)
  26. Zhang H, Li L, Tatsumi E, Isobe S. High-pressure treatment effects on protein in soy milk. LWT-Food Sci. Technol. 38: 7-14 (2005) https://doi.org/10.1016/j.lwt.2004.04.007
  27. Garcia-Graells C, Hauben KJA, Michiels CW. High-pressure inactivation and sublethal injury of pressure-resistant Escherichia coli mutants in fruit juices. Appl. Environ. Microb. 64: 1566-1568 (1998)
  28. Bayindirli A, Alpas H, Bozoglu F, Hizal M. Efficacy of high pressure treatment on inactivation of pathogen microorganisms and enzymes in apple, orange, apricot, and sour juices. Food Control 17: 52-58 (2006) https://doi.org/10.1016/j.foodcont.2004.09.002
  29. Buzrul S, Alpas H. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: A preliminary study. FEMS Microbiol. Lett. 238: 29-36 (2004)
  30. Chen H, Hoover DG. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. 4: 25-34 (2003) https://doi.org/10.1016/S1466-8564(02)00083-8
  31. Xiong R, Xie G, Edmondson AE, Sheard MA. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46: 45-55 (1999) https://doi.org/10.1016/S0168-1605(98)00172-X
  32. Whiting RC, Sackitey S, Calderone S, Morely K, Phillips JG. Model for the survival of Staphylococcus aureus in nongrowth environments. Int. J. Food Microbiol. 31: 231-243 (1996) https://doi.org/10.1016/0168-1605(96)01002-1
  33. Ahn J, Balasubramaniam VM. Inactivation kinetics of Listeria innocua ATCC 33090 at various temperature heating-up and pressure building-up rates. Food Sci. Biotechnol. 16: 255-259 (2007)
  34. Kilimann KV, Hartmann C, Delgado A, Vogel RF, Ganzle MG. Combined high pressure and temperature induced lethal and sublethal injury of Lactococcus lactis - Application of multivariate statistical analysis. Int. J. Food Microbiol. 109: 25-33 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.01.006
  35. Erkmen O, Dogan C. Effects of ultra hydrostatic pressure on Listeria monocytogenes and natural flora in broth, milk, and fruit juices. Int. J. Food Sci. Technol. 39: 91-97 (2004)
  36. Martinez-Rodriguez A, MacKey BM. Factor affecting the pressure resistance of some Campylobacter species. Lett. Appl. Microbiol. 41: 321-326 (2005) https://doi.org/10.1111/j.1472-765X.2005.01768.x
  37. Black EP, Huppertz T, Fitzgerald GF, Kelly AL. Baroprotection of vegetative bacteria by milk constituents: A study of Listeria innocua. Int. Dairy J. 17: 104-110 (2007) https://doi.org/10.1016/j.idairyj.2006.01.009
  38. Carlez A, Rosec J-P, Richard N, Cheftel J-C. High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens, and Listeria innocua in inoculated minced beef muscle. LWT-Food Sci. Technol. 26: 357-363 (1993) https://doi.org/10.1006/fstl.1993.1071
  39. Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG. High hydrostatic pressure as a hurdle for Zygosaccharomyces bailii inactivation. J. Food Sci. 62: 855-857 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb15471.x
  40. Cheftel JC. High-pressure, microbial inactivation, and food preservation. Food Sci. Technol. Int. 1: 75-90 (1995) https://doi.org/10.1177/108201329500100203
  41. Alpas H, Kalchayanand N, Bozoglu F, Ray B. Interactions of high hydrostatic pressure, pressurization temperature, and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int. J. Food Microbiol. 60: 33-42 (2000) https://doi.org/10.1016/S0168-1605(00)00324-X
  42. Wuytack EY, Soons J, Poschet F, Michiels CW. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microb. 66: 257-261 (2000) https://doi.org/10.1128/AEM.66.1.257-261.2000