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Abstract

The Pearson chi-squared statistic or the deviance statistic is widely used in assessing the goodness-of-fit
of the generalized linear models. But these statistics are not proper in the situation of continuons explanatory
variables which results in the sparseness of cell frequencies. We propose a goodness-of-fit test statistic for the
cumulative logit models with ordinal responses. We consider the grouping of a dataset based on the ordinal scores
obtained by fitting the assumed model. We propose the Pearson chi-squared type test statistic, which is obtained
from the cross-classified table formed by the subgroups of ordinal scores and the response categories. Because
the limiting distribution of the chi-squared type statistic is intractable we suggest the parametric bootstrap testing
procedure to approximate the distribution of the proposed test statistic.

Keywords: Ordinal response, proportional odds model, goodness-of-fit, generalized link, ordinal
scores, bootstrap. '

1. Introduction

To assess the goodness of the assumed model we usually perform the goodness-of-fit(GOF) test in
addition to the check of residuals in the generalized linear models. In the binary logistic model
including continuous explanatory variables the GOF test by Hosmer and Lemeshow (1980), the so
called Hosmer-Lemeshow test, is very popular. The Hosmer-Lemeshow test statistic is a Pearson chi-
squared type statistic applied to a g x 2 table formed by subgroups based on the predicted probabilities
and the two response categories. The Pearson chi-squared type statistic calculated from this kind of
table with random cell boundaries does not have the limiting chi-squared distribution in general. So
we encounter the difficulty of determining the critical points of GOF test statistic. We study on the
GOF test statistic and the approximation to its distribution in the ordinal response cumulative logit
including the binary logistic model as a special case.

The grouping method by Hosmer and Lemeshow (1980) in the binary logistic regression models
to be helpful for the ordinal response model. A g x 2 table is formed based on the sorted values of
predicted probabilities in such a manner that the number of cases in all subgroups are approximately
equal. The Hosmer-Lemeshow statistic is the usual Pearson chi-squared type statistic applied to this
g X 2 table.

But for the case of ordinal response model with K response categories the use of predicted prob-
abilities of only a certain response category does not seem to be reasonable. We instead consider a
linear combination of the response probabilities m.(x) which is called the ordinal scores by Lipsitz et
al. (1996). We partition the whole subjects into g subgroups using the percentiles of these ordinal
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scores, which results in a g X K cross-classified table. We routinely compute the chi-squared type
statistic from this g X K table to perform the GOF test for the assumed model.

Chernoff and Lehmann (1954) discussed the limiting distribution of the chi-squared type statistic
from the table with random cell boundaries, and later Moore and Spruill (1975) discussed it more
generally. Under some regularity conditions the limiting distribution of the chi-squared type statistic
from the random table is a weighted sum of independent chi-squared random variables with one
degrees of freedom. Because of the complexity of the limiting distribution it is difficult to apply it
directly. ,

It leads us to consider an alternative approach to find the distribution of the proposed test statistic.
We suggest a parametric bootstrap testing procedure to perform the GOF test for the ordinal response
model.

2. Ordinal Response Models

To formulate the ordinal response model we let P(Y < j|x) be the cumulative of response probabilities
m(x)'s until the j” category at the covariate value x. That is

J
P(Y < jiX) = ) m(), @1
k=1
where j = 1,..., K — 1. The cumulative logit model is defined as
P(Y < jIx) : :
=a;+B; =1,...,K 2.2
[1—P(YS]|X)] Q'] +ﬁ] X, .] ( )

The left hand side of (2.2) is simply written as logit[P(Y < j|x)]. In particular when 8 j's are all equal
to a common 8 = (B, ...,/3,)’, we obtain the so called proportional odds model of the form

logit [P(Y < jiX)] = a; +B'x. 2.3)

We note that the model (2.3) has the same effects B for each logit but each cumulative logit has its own
intercept a; satisfying @; < --- < ag_;. The proportional odds model constrains the K — 1 response
curves to have the same shape. The probability of response category n;(x) can be recursively obtained
from the Equations (2.1) and (2.3), and hence we can find the MLEs of the @; and B based on the
likelihood function of multinomial trials.

The overall fit of the model can be significantly improved by using asymmetric links in many ap-
plications. A family of generalized link functions which includes somewhat important and commonly
used symmetric and asymmetric links has been introduced by Stukel (1988). The most popular links
such as logit, probit, and complementary log-log link are approximated by the members of this family.

Hereafter for simplification we denote the linear predictor as

nj(x) = a; +B; x. (2.4)
The generalized link model is given in terms of A, (5;(x)) by
logit [P(Y < jI%)] = hy(n;(x)), 2.5)

where h,(?) is a non-decreasing function depending on ¥ = (y1,¥2). The generalized link functions
will be explained in detail in Section 4.1.
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Table 1: Grouping structure by ordinal scores

Group 1 e k - K Total
1 On O Ok n
j 0;1 (jjk OjK n;
g égl égk OgK ng

3. Goodness-of-Fit Tests
3.1. Grouping by ordinal scores

The ordinal scores can be used as a means of partitioning subjects into subgroups in the ordinal
response models. Lipsitz er al. (1996) defined the ordinal score s(x) at the covariate value x by

s(X) = m(X) + 2ma(X) + - - - + Kng(X). 3B.D

Specially, when K = 2 the ordinal score s(x) is equivalent to the binary response probability. The
ordinal score s(x) depends on the parameters o j' s and B and we simply denote §(x) when the estimated
parameters are substituted.

The grouping scheme consists of the following steps. We firstly sort the ordinal scores in an
increasing (or decreasing) order and nextly partition the whole observations so that approximately the
same number of ordinal scores belongs to each group. If we let [@] be the largest integer smaller than
or equal to g, the first group consists of approximately [n/g] number of subjects having the ordinal
scores from the smallest. The second group is similarly formed by the subjects having the next [n/g]
smallest ordinal scores. In this fashion the group boundaries [c;,c; + 1), j = 1,..., g, are determined
with ¢; = 0 and ¢y, = oo. Hence if a subject with k™ response category has ordinal score s(x) such
that ¢; < s(x) < ¢}, then the subject belongs to the (j, k) cell. Thus we can build gx K cross-classified
table with random cell boundaries as shown in Table 1. The cell counts O jk' s are obtained by counting
the number of subjects in the (j, k) cell.

3.2. Test statistic

In a similar manner to obtain O % we can determine the expected frequency E % by summing the
estimated probabilities #,(x;) for all subjects in the (j, k) cell as follows
Ejy = Z (X3, (3.2)

§(Xi)E[C},C‘f+1)

where the summation is taken over all the subjects having the ordinal scores ¢; < s(x) < ¢y and the
k™ response category.

As a GOF test on the proportional odds model (2.3) we consider the Pearson chi-squared type
statistic of the form, which has been investigated by many researchers in many testing situations
including the test of independence,

8
T = z (3.3)
=1

(ojk - Ejk)z
J Ejy ‘

jk

b
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As discussed by Moore and Spruill (1975) the limiting distribution of the chi-squared type statistic
can be expressed as a weighted sum of independent chi-squared variables with one degrees of freedom.
Since this limiting distribution is infeasible except for special cases we need an alternative approach
to find the distribution of 7. On the other hand Bull (1994) suggested the limiting distribution of T be
chi-squared with g(K — 1) — 2 degrees of freedom.

As an alternative approach we propose the bootstrap based testing procedure which consists of the
following steps. Let (x;,¥:), i = 1,2, ..., n, be a random sample with y; denoting the ordinal response.

Step 1: Fit the assumed model to find the #;(X;) and the ordinal scores §(x;).
Step 2: Calculate the value of T from the g X K table as given in Table 1.

Step 3: Generate the ordinal responses y from the multinomial distribution having probabilities
#x(x;) to form a bootstrap sample (x;,y;), i = 1,2,...,n.

Step 4: In a similar way as Step 2 calculate the statistic 7* based on the bootstrap sample (x;, y}).

Step 5: Step 3 and Step 4 are repeated B times to find the empirical significance probability of the
statistic 7.

3.3. Other tests

In this section we explain other testing procedures for the GOF of ordinal response models with the
grouping methods on which the test statistics depend. Firstly, we comment on the test by Pigeon and
Heyse (1999), denoted as )(%,H, which is in the same vein of the proposed statistic in the sense that it
is computed based on the Table 1. The statistic y3,, is of the form

g K . .
=2 o (3.4)
i J J

where ¢ = Z;.Zl Aex){1 — me(x)}/{njm (1 — 7 )} with 7 denoting the average of #;(x;) in the
(j, k) cell. Pigeon and Heyse (1999) suggested the limiting distribution of y%, be chi-squared with
(g — D(K — 1) degrees of freedom.

Nextly, before we introduce the test statistic by Pulkstenis and Robinson (2004) we briefly explain
their grouping strategy which consists of the following two stages. All subjects are partitioned into
subgroups according to the patterns of categorical covariates, and then each subgroup is split into two
parts according to the median of ordinal scores within each subgroup. We denote the number of all
possible covariate patterns by I to discriminate from the number of groups g mentioned in Section
3.1. The resulting cross-classified table appears as in Table 2. We note that the additional stratifica-
tion based on the medians of ordinal scores doubles the number of covariate patterns to incorporate
information related to all continuous covariates in the model.

The cell count n, or the expected count E ik is routinely computed by summing the number of
subjects or predicted probabilities within each cell. Pulkstenis and Robinson (2004) suggested two
types of test statistics, the one is the chi-squared type statistic defined by

A 2
G-y 33 bl e
- hk

I
j=1 k=1 k=1
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Table 2: Grouping structure by categorical covariate patterns

Group Subgroup 1 e k e K
1 1 Ryt nyk nig
2 ny21 N2k niok

I 1 i i nnK
1 s nik - npx

Table 3: Dataset of mental impairment

Y X X Y X X3 Y X X Y X X5
Well 1 1 Well 1 0 Mild 9 1 Maoderate 3 0
Well 9 1 Well 2 0 Mild 3 0 Impaired 8 1
Well 4 1 Mild 5 1 Mild 3 1 Impaired 2 1
Well 3 1 Mild 6 0 Mild 1 1 Impaired 7 1
Well 2 0 Mild 3 1 Moderate 0 0 Impaired 5 0
Well 0 1 Mild 1 0 Moderate 4 1 Impaired 4 0
Well 1 0 Mild 8 1 Moderate 3 0 Impaired 4 0
Well 3 1 Mild 2 1 Moderate 9 0 Impaired 8 1
Well 3 1 Mild 5 0 Moderate 6 1 Impaired 8 0
Well 7 1 Mild 5 1 Moderate 4 0 Impaired 9 0

and the other is the deviance type of the form
, I 2 K "
Di=2" %% njulog =—. (3.6)
j=1 h=1 k=1 Ejk

According to Pulkstenis and Robinson (2004) the limiting distribution of the test statistics )(%,R
and D%,R is chi-squared with (21 — 1)}(K —~ 1) — g — 1 degrees of freedom, where g is the number of
categorical covariates. As commented by Kuss (2002) the tests by Pulkstenis and Robinson (2004)
cannot be applied in the models with no categorical covariates. Furthermore we note that this grouping
method incurs the sparseness of the table due to subpartition of groups.

3.4. Practical example

Here we explain the various GOF tests through a practical example having an ordinal response. The
dataset given in Table 3 comes from Agresti (2002) on the study of mental health for a random sample
of adult residents of Alachua County, Florida. The variable mental impairment is ordinal with four
categories; well, mild symptom formation, moderate symptom formation, impaired. We are interested
in modelling the mental impairment in terms of two explanatory variables. The one is the life events
index, which is a composite measure of the number and severity of important life events that occurred
to the subject within the past 3 years. The other is the socioeconomic status of binary measurement
high or low. We regard the mental impairment as an ordinal response variable Y, and also we denote
the fife event and the socioeconomic status as X; and X, respectively.
We fit the proportional odds model

logit[P(Y < jiX)] = a; + B X, + BoXa, Jj=1,2,3. (3.7)

The tests X%) r and D%R by Pulkstenis and Robinson (2004) have the respective significances 0.530 and
0.290 independently of the value of g. But as we see in Table 4 the significances of the statistic 7 and
the X%’H vary according to the number of groups g.
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Table 4: Significance of GOF tests

2
& bootstrap Bull XpH
4 0.210 0.490 0.390
5 0.320 0.410 0.330
6 0.240 0.340 0.270
Table 5: Generalized link functions
Link Types Values of vy, y2
logit link 1 =0, y2=0
complementary log-log link 1 = 0.620, y, = -0.037
asymmetric long-short link yi=-1, wym=1
long link v =-1, y2=-1
short link v =1, Y2 =

All of the tests compared here say that the GOF the assumed model (3.7) seems to be proper
because none of the significance is smaller than the usual significance level @ = 0.05. But we are
confronted with the determination of g. The rule-of-thumb in the chi-squared type statistics requires
E & to be greater than or equal to 5. According to this rule we can roughly approximate g to satisfy
g < n/(5K) when the sample size is moderately large. In this example from n = 40 and K = 4
we find g = 2, very small number, which results in the decrease of powers of GOF tests. It would be
desirable to consider the tradeoff between the magnitude of expected counts and the number of groups

according to the values of n and K. Conclusively we prefer the value of g = 4 in this example.

4. A Monte Carlo Study
4.1. Simulation design

We consider generalized links to compare empirical powers of various GOF tests discussed in this
paper. The generalized link function £, (n,(x)) is defined in two ways according as 77;(x) > 0 or not.
When 7;(x) > 0 the £, (57,(x)) is of the form

v {expmic) -1}, 7 >0,
hy (7,0) =4 7,0, 7 =0, @1
—yi'log(l-yim®), 7 <O0.

On the other hand when 7;(x) < 0, the function h,(1;(x)) is defined by

~y3lexp(~ym;®) -1, 32 >0,
hy (n0) =4 m,), 72 =0, “42)

7;" log (1 +y2m;(). 72 <0,
The function h,(1,(x)) is strictly increasing and nonlinear. The values of y; and vy, controls the shape
of the lower and upper tails of the link function. Several links listed in Table 5 are used in this
simulation study to compare the empirical powers of the GOF tests discussed in this paper for the

ordinal response models with misspecified links.
To assess the powers of detecting misspecified links we fit the proportional odds model

Hy : logit[P(Y < jIx)] = 17;(x) 4.3)
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against the generalized link model
Hy 2 logit[ P(Y < jix)] = hy(n;(x)). (“4.4)
Firstly for the null model (4.3) we assume the linear predictor
n;(X) = a; + B X1 + X, + B3Z.

Here the variables X;, i = 1,2, are generated from the Bernoulli distribution with probability 1/2, and
Z is from the uniform distribution over (1, 3). We simply let the covariate values as X = (x1, x3, 7). For
example, when X; = 0, X, =0, Z = 1 we have x = (0,0, 1). The intercept a ;» and the coefficients of
X; and Z are determined in the following way. We arbitrarily fix @; = —1.25 and 8, = —1.0, and then
simultaneously solve the equations

PIY = 1x=(0,0,1)] =0.27, PlY <2Ix=(1,0,3)] =0.56
to find other coefficients. In this way we determined the linear predictor n #x) of (4.1) as
My : T]j(X) =a;+ 0.75X, — 1.0X, + 0.25Z; @] = -1.25, a; = 0.25.

When we fit the proportional odds model (4.1) to the pseudo dataset generated from the model itself
the GOF tests are required to satisfy the significance level a in the respect of Type I error rate.

Furthermore to compare the powers of various GOF tests for the pseudo dataset generated from
the model (4.2) we fit the proportional odds model (4.1). The coefficients of j(X) in the model (4.2)
are determined in a similar manner discussed before. The first of the generalized link models we are
to consider is the complementary log-log model which have y; = 0.620 and y, = —0.037. In this
model we take the linear predictor as

M1 : T]j(X) =a;— 067X1 + 0692, a) = —0.5, Q) = 1.0.

The categorical variable X is assumed as before to be Bernoulli with probability 1/2 and Z is uniform

over (=3, 3). For the case of asymmetric long-short link having y; = —1 and y; = 1, we take 17,(x) to
be

M : n;x)=a;-0.15X, +2.0Z; a;=-15,a;=15.

Similarly for the long-link with y, = ~1 and y, = —1, the model M3, the ;(x) is of the form
M;: n;x) =a; - 70X, +2.0Z; a; =3.0, az =10.0.

Lastly, for the short-link model having y; = 1 and y, = 1, the model My, we take 7 i(x) as
My nixX)=a; -15X,+15Z;, o =-15, ap=15.

4.2, Simulation results

In this section we tabulate the empirical powers for the various GOF tests obtained from 200 iterations
and 300 bootstrap replications. We will discuss the performance of the proposed test 7 compared to
other tests discussed in this paper. We also include the usual Pearson chi-squared statistic y? and the
deviance D for comparison in the last two columns of Table 6 and Table 7. As we see in Table 6
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Table 6: Empirical significance levels for the true model
T

2
Model ¢ N bootstrap Bull X %H X g’R D%’R X »

100 0.030 0.005 0.005 0.060 0.115 0.055 0.065

0.05 150 0.055 0.025 0.025 0.050 0.070 0.060 0.065

Mo 200 0.060 0.030 0.035 0.095 0.115 0.080 0.085
100 0.075 0.030 0.030 0.135 0.190 0.105 0.135

0.10 150 0.110 0.065 0.065 0.160 0.185 0.125 0.125

200 0.115 0.065 0.065 0.150 0.165 0.110 0.115

Table 7: Empirical powers of the misspecified models
T

Model ¢ N bootstrap Bull X i’H X %’R D%R X D

100 0.090 0.040 0.060 0.060 0.095 0.070 0.080

0.05 150 0.080 0.065 0.065 0.075 0.070 0.045 0.045

M 200 0.105 0.055 0.055 0.075 0.075 0.050 0.050
! 100 0.190 0.110 0.110 0.150 0.205 0.150 0.155
0.10 150 0.135 0.100 0.100 0.140 0.145 0.105 0.110

200 0.185 0.130 0.130 0.145 0.150 0.120 0.125

100 0.510 0.510 0.520 0.155 0.180 0.025 0.030

0.05 150 0.730 0.785 0.795 0.265 0.360 0.025 0.025
M 200 0.845 0.885 0.890 0.395 0.525 0.035 0.0300
2 100 0.655 0.570 0.585 0.245 0.335 0.075 0.075
0.10 150 0.880 0.865 0.870 0.375 0.540 0.075 0.080

200 0915 0.915 0915 0.520 0.650 0.060 0.060

100 0.455 0.410 0.410 0.395 0.310 0.110 0.100

0.05 150 0.650 0.615 0.615 0.530 0415 0.195 0.180

M 200 0.690 0.670 0.680 0.640 0.550 0.275 0.250
3 100 0.555 0.495 0.495 0.475 0.395 0.215 0.180
0.10 150 0.755 0.715 0.715 0.610 0.520 0.285 0.265

200 0.810 0.780 0.780 0.735 0.670 0.375 0.360

100 0.610 0.575 0.590 0.260 0.465 0.090 0.090

0.05 150 0.790 0.800 0.805 0.450 0.635 0.155 0.155

M 200 0.885 0.900 0.905 0.610 0.835 0.175 0.175
4 100 0.750 0.695 0.715 0.410 0.595 0.145 0.150
0.10 150 0.895 0.870 0.885 0.565 0.790 0.240 0.240

200 0.930 0.935 0.935 0.760 0.920 0.310 0.310

for the true model M, the proposed tests have approximately correct the Type I errors that range from
0.03 to 0.06 at the nominal significance level & = 0.05. The tendency is similar at @ = 0.10. On the
other hand the Type I error of x5, is 0.095 at & = 0.05, and also 0.160 at @ = 0.10. Both x2 and 2,
are seem to be conservative.

The empirical powers for the misspecified link models M; through M, are given in Table 6. In the
complementary log-log link model M; all tests have lower powers than the other models of misspeci-
fied links. But for the asymmetric long-short model M,, our proposed test attains its power as high as
91.5% at & = 0.10. We can see similar tendency in other links models of M; and Mj.

5. Conclusion and Further Research

The Hosmer-Lemeshow GOF test for the binary logistic model has been extended to the ordinal
response cumulative logit model. We suggest a grouping strategy using the ordinal scores to form
a cross-classified table from which the chi-squared type GOF test statistic can be computed. As a
special case for the binary logistic model this method coincides with the Hosmer-Lemeshow GOF
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test. As have been studied by many researchers the chi-squared type statistic on the table with random
boundaries does not have the limiting chi-squared distribution but is a weighted sum of independent
chi-squared random variables with one degree of freedom.

This is a difficulty in performing the GOF test because we cannot easily find the significance of the
test statistic. A bootstrap based testing procedure is a good alternative to the limiting distribution of
GOF test. We explained the proposed GOF test through a practical example. A Monte Carlo study has
been performed to compare various GOF tests for ordinal response models with misspecified links.

Extensive study on the limiting distribution of the proposed test statistic and also on the consis-
tency of the parametric bootstrapped test statistic is remained as a further research.
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