References
- Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London
- Gradshteyn, I. S. and Ryzhik, M. (1980). Table of Integrals, Series and Products, 4th ed., Academic Press, New York
- Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of distribution expressible in inverse form, Water Resources Research, 15, 1049-1054 https://doi.org/10.1029/WR015i005p01049
- Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combina-tions of order statistics, Journal of Royal Statistical Society, Series B, 52, 105-124
- Hosking, J. R. M. (1994). The four-parameter Kappa distribution, IBM Journal of Research and Development, 38, 251-258 https://doi.org/10.1147/rd.383.0251
- Hosking, J. R. M. and Wallis J. R. (1997). Regional Frequency Analysis: An Approach Based on L-moments, Cambridge University Press, Cambridge, UK
- Jeong, B. Y. (2009). On the Properties of a Generalized Gumbel Distribution and r-kappa Distribu-tion, Ph.D. Thesis, Chonnam National University, Gwangju
- Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions-1, Wiley Interscience, New York
- Lee, S. H. and Maeng, S. J. (2003). Comparison and analysis of design floods by the change in the order of LH-moment methods, Irrigation and Drainage, 52, 231-245 https://doi.org/10.1002/ird.91
- Mason, S. J., Waylen, P. R., Mimmack, G. M., Rajaratnam, B. and Harrison, J. M. (1999). Changes in extreme rainfall events in South Africa, Climatic Change, 41, 249-257 https://doi.org/10.1023/A:1005450924499
- Meshgi, A. and Khalili, D. (2009). Comprehensive evaluation of regional flood frequency analysis by L- and LH-moments. I. A re-visit to regional homogeneity, Stochastic Environmental Research and Risk Assessment, 23, 119-135 https://doi.org/10.1007/s00477-007-0201-7
- Mielke, P. W. (1973). Another family of distributions for describing and analyzing precipitation data, Journal of Applied Meteorology, 12, 275-280 https://doi.org/10.1175/1520-0450(1973)012<0275:AFODFD>2.0.CO;2
- Mielke, P. W. and Johnson, E. S. (1973). Three-parameter kappa distribution maximum likelihood estimates and likelihood ratio tests, Monthly Weather Review, 101, 701-711 https://doi.org/10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.CO;2
- Mielke, P. W. and Johnson, E. S. (1974). Some generalized beta distributions of the second kind having desirable application features in hydrology and meteorology, Water Resources Research, 10, 223-226 https://doi.org/10.1029/WR010i002p00223
- Oh, M., Kim, S., Park, J. S. and Son, Y. S. (2007). Bayesian estimation of the two-parameter kappa distribution, Communications of the Korean Statistical Society, 14, 355-363 https://doi.org/10.5351/CKSS.2007.14.2.355
- Oztekin, T. (2007). Wakeby distribution for representing annual extreme and partial duration rainfall series, Meteorological Applications, 14, 381-387 https://doi.org/10.1002/met.37
- Park, J. S., Jung, H. S., Kim, R. S. and Oh, J. H. (2001). Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution, International Journal of Climatology. 21, 1371-1384 https://doi.org/10.1002/joc.701
- Park, J. S. and Jung, H. S. (2002). Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate, Theoretical and Applied Climatology, 72, 55-64 https://doi.org/10.1007/s007040200012
- Park, J. S. and Kim, T. Y. (2007). Fisher information matrix for a four-parameter Kappa distribution, Statistics & Probability Letters, 77, 1459-1466 https://doi.org/10.1016/j.spl.2007.03.002
- Park, J. S., Seo, S. C. and Kim, T. Y. (2009). A kappa distribution with a hydrological application, Stochastic Environmental Research and Risk Assessment, 23, 579-586 https://doi.org/10.1007/s00477-008-0243-5
- Wang, Q. J. (1997). LH moments of statistical analysis of extreme events, Water Resources Research, 33, 2841-2848 https://doi.org/10.1029/97WR02134
- Wilks, D. S. (1993). Comparison of three-parameter probability distributions for representing annual extreme and partial duration precipitation series, Water Resources Research, 29, 3543-3549 https://doi.org/10.1029/93WR01710
Cited by
- Use of beta-P distribution for modeling hydrologic events vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.015