참고문헌
- Bender, C. (2003). An Ito formula for generalized functional of a fBm with arbitrary hurst parameters, Stochastic Processes and Their Applications, 104, 81-106 https://doi.org/10.1016/S0304-4149(02)00212-0
- Biagini, F. and Oksendal, B. (2003). Minimal variacnce hedging for fractional Brownian motion, Methods and Applications of Analysis, 10, 347-362 https://doi.org/10.4310/MAA.2003.v10.n3.a2
- Biagini, F. and Oksendal, B. (2004). Forward integrals and an Ito formula for fractional Brown-ian motion, Working Paper, Available from: http://www.mathematik.uni-muenchen.de/ biagini/ricerca/forwfbm.pdf
- Bjork, T. and Hult, H. (2005). A note on Wick products and the fractional Black-Scholes model, Finance and Siochastics, 9, 197-209 https://doi.org/10.1007/s00780-004-0144-5
- Cajueiro, D. and Tabak, B. (2007). Testing for fractional dynamics in the Brazilian term structure of interest rates, Physics Letters, 1, 1-5
- Duncan, T., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fBm, Journal on Control and Optimization 38, 582-612 https://doi.org/10.1137/S036301299834171X
- Eberlein, E. and Raible, S. (1999). Term structure models deriven by general Levy processes, Mathe-matical Finance, 9, 31-53 https://doi.org/10.1111/1467-9965.00062
- Lim, J., Lee, K. and Song, H. (2008). Estimation of liquidity cost in financial markets, Communication of the Korean Statistical Society, 15, 111-118 https://doi.org/10.5351/CKSS.2008.15.1.117
- Mandelbrot, B. B. (1971). When can price Be arbitraged efficiently? A limit to the validity of the random walk and martingale models, Review of Economics and Statistics, 53, 225-236 https://doi.org/10.2307/1937966
- Oksendal, B. (2007). Fractional Brownian Motion in Finance, In Jensen, B. and Palokangs, T. (ed) Stochastic Economic Dynamics, Cambridge University Press, Cambridge
- Rhee, J. H. and Kim, Y. T. (2008). Cap pricing under the fBm, Communication of the Korean Statis-tical Society, 15, 137-145 https://doi.org/10.5351/CKSS.2008.15.1.137