DOI QR코드

DOI QR Code

종속 오차에 대한 분포 변화 검정법

Test for Distribution Change of Dependent Errors

  • 나성룡 (연세대학교 정보통계학과)
  • Na, Seong-Ryong (Department of Information and Statistics, Yonsei University)
  • 발행 : 2009.07.31

초록

이 논문에서는 선형회귀모형의 오차항에 대한 변화점 검정 문제를 다룬다. 고정 혹은 변동 모형의 독립 변수와 약한 종속성을 가지는 오차항을 가정하는 관계로 통상적인 중회귀모형뿐만 아니라 ARMA 등의 시계열 모형까지 본 논문에서 포괄한다고 하겠다. 오차항의 분포 변화를 검정하기 위하여 회귀모형의 잔차에 기초한 확률밀도함수 추정값을 이용한다. 적절한 가정하에서 잔차를 이용한 검정이 실제 오차를 이용한 경우와 동일한 극한 분포를 가짐을 보였다.

In this paper the change point problem of the error terms in linear regression models is considered. Since fixed or stochastic independent variables and weakly dependent errors are assumed, usual multiple regression models and time series models including ARMA are covered. We use the estimates of probability density function based on residuals in order to test the distribution change of the unobserved errors. Under some mild conditions, the test using the residuals is proved to have the same limiting distribution as the test based on true errors.

키워드

참고문헌

  1. Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models, Annals of Statistics, 22, 2051-2061 https://doi.org/10.1214/aos/1176325771
  2. Billingsley, P. (1999). Convergence of Probability Measures, 2nd edition, John Wiley & Sons, New York
  3. Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes, 2nd edition, Springer, New York
  4. Chanda, K. C. (1995). Large sample analysis of autoregressive moving-average models with errors in variables, Journal of Time Series Analysis, 16, 1-15 https://doi.org/10.1111/j.1467-9892.1995.tb00220.x
  5. Doukahn, P. (1994), Mixing: Properties and Examples, Springer, New York
  6. Lee, S. and Na, S. (2002). On the Bickel-Rosenblatt test for first-order autoregressive models, Statistics and Probability Letters, 56, 23-35 https://doi.org/10.1016/S0167-7152(01)00143-2
  7. Lee, S. and Na, S. (2004). A nonparametric test for the change of the density function in strong mixing processes, Statistics and Probability Letters, 66, 25-34 https://doi.org/10.1016/j.spl.2003.08.010
  8. Ling, S. (1998). Weak convergence of the sequential empirical processes of residuals in nonstationary autoregressive models, Annals of Statistics, 26, 741-754 https://doi.org/10.1214/aos/1028144857
  9. Na, S., Lee, S. and Park, H. (2006). Sequential empirical process in autoregressive models with measure-ment errors, Journal of Statistical Planning and Inference, 136, 4204-4216 https://doi.org/10.1016/j.jspi.2005.07.010
  10. Silverman, B. W. (1986). Density estimation for statistics and data analysis, Chapman and Hall, London
  11. Takahata, H. and Yoshihara, K. (1987). Central limit theorems for integrated square error of nonparametric density estimators based on absolutely regular random sequences, Yokohama Mathematics Journal, 35, 95-111