대전지역 도심하천의 수리화학적 및 동위원소적 특성

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area

  • 정관호 (대전대학교 지반설계정보공학과) ;
  • 문병진 (대전대학교 지반설계정보공학과)
  • Jeong, Chan-Ho (Dept. of Geotechnical Design Engineering, Daejeon University) ;
  • Moon, Byung-Jin (Dept. of Geotechnical Design Engineering, Daejeon University)
  • 발행 : 2009.08.28

초록

이 연구에서는 대전지역 주요 도심하천인 갑천, 유등천, 대전천을 대상으로 하천수의 수리화학적 특성과 산소, 수소, 황, 탄소 동위원소 특성을 분석하였다. 하천수 시료는 풍수기와 갈수기 2차례 채취되었다. 하천의 수리화학적 특성은 상류에서는 Ca(Mg)-$HCO_3$ 유형을 보이다가 도심권을 통과하면서 Ca(Mg)-$SO_4(Cl)$유형으로 전이되고 하류에서는 Na(Ca)-$HCO_3$(Cl, $SO_4$) 유형으로 변하였다. 이와 같은 화학적 유형의 변화는 자연적 영향뿐만 아니라 하수처리장의 방류수와 인위적 오염물질의 유입에 의한 영향이 관여된 것으로 해석된다. 전반적으로 풍수기에 비해 갈수기에 하천수의 전기전도도 값이 높은 특성을 보여준다. 갑천하류는 하수종말처리장의 방류수가 합류되면서 수질이 급격하게 변화한다. 하천수의 pH는 상류에서 중성을 보이다가 도심권을 지나면서 최고 pH 9.8의 고알카리성을 보인다. 이는 현장조사결과 아파트의 우수관을 통한 세제 유입에 기인하는 것으로 보인다. 하천수의 산소-수소 동위원소 관계식은 ${\delta}D=6.45{\delta}^{18}O-7.4$으로 Craig의 순환수선보다 다소 하향 이동되어 도시된다. 이는 기단의 변화와 하천수의 표면 증발 효과에 의한 것으로 보인다. 뿐만 아니라, 상-하류사이에 고도효과를 반영하는 동위원소 조성 값의 차이를 보여준다. 하천수의 ${\delta}^{13}C$ 값은 $-19.5{\sim}-7.8%o$ 범위로 대기중 이산화탄소와 유기물 기원의 범위에 해당된다. 전반적으로 하천수의 상류에서 하류로 향할수록 ${\delta}^{13}C$값이 높아지므로 $CO_2$의 기원이 상류에서는 주로 유기물기원에서 도심권에서는 오염된 대기와 지하수의 기저유출로 인한 무기기원의 비율이 높아지기 때문으로 해석된다. ${\delta}^{34}S-SO_4$함량 관계도에서 하천수를 4개 그룹(갑천중 상류, 유등천, 대전천, 갑천하류)으로 구분하였다. 황산염의 농도는 갑천중상류<유등천<대전천<갑천하류의 순서로 높아지는 반면 ${\delta}^{34}S$값은 감소하는 경향을 보인다. 이는 하천별 황산염의 증가에 따른 공급원이 다르다는 것을 의미한다. 하천수내 황의 기원은 대기기원을 중심으로 황산염의 농도가 높아질수록 황철석의 영향이 큰 것으로 해석된다. 그러나 하천수에 유입되는 생활하수 등에 대한 황동위원소 자료가 없으므로 이에 대한 영향에 대해서는 향후 연구되어야할 과제이다.

In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

키워드

참고문헌

  1. Ball, J.W. and Nordstrom, D. K. (1992) User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of minor, tracer and redox elements in natural waters, U. S., Geolo. surv., Open File Rep. 91-183, 189pp
  2. Cerling, T.E., Solomon, D.K., Quade, J. and Bowman, J.R. (1991) On the isotopic composition of carbon in soil carbon dioxide, Geochimica et Cosmochimica Acta, v. 55, p. 3403-3405 https://doi.org/10.1016/0016-7037(91)90498-T
  3. Choi, S.W. and Kim, E.S. (1997) Medical environmental geochemistry, A translation library of Korea Research Foundation, 201, Chunkwang, 434p
  4. Clark, I.D. and Fritz, P. (1997) Environmental isotopes in hydrology, Lewis Publishers, 328p
  5. Coleman, M.L., Shepherd, T.J., Durhham, J.J., Rouse, J.E. and Moore, G.R. (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem., v. 54, p. 993-995 https://doi.org/10.1021/ac00243a035
  6. Craig, H. (1961) Isotopic variation in meteoric water, Science, v. 133, p. 1702-1703 https://doi.org/10.1126/science.133.3465.1702
  7. Daejeon metropolitan city (2000) Long-term strategy plan of groundwater management, 531p
  8. Daejeon metropolitan city (2006) Annual report of statistics of Daejeon metropolitan city, 135p
  9. Grasby, S.E., Hutcheon, I. and Krouse, H.R. (1997), Application of the stable isotope composition of $SO_{4}$ to tracing anomalous TDS in Nose Creek, southern Alberta, Canada, applied Geochemistry, v. 15, p. 67-77 https://doi.org/10.1016/S0883-2927(97)00014-0
  10. Harris, C., Stock, W.D. and Lanham, J. (1997) Stable isotope constraints on the origin of $CO_{2}$ gas exhalations at Bongwan, Natal, South africa, J. of Geology, v. 100, p. 261-266
  11. Hem, J. D. (1992) Study and interpretation of the chemical characteristics of natural water, USGS water-supply paper 2254, 263p
  12. Jeong, C.H. (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea, Journal of Hydrology, v. 253, p. 194-210 https://doi.org/10.1016/S0022-1694(01)00481-4
  13. Kang, C.M. (2000), Study on plankton phases and water quality of major streams in Dajeon city, K. of Env. Sci. v. 5, p. 275-284
  14. Kang, H. and Bae, S.W. (1995) Hydraulic investigation of major stram in Daejeon city, Report of environmental research, Chungnam University, v.13, p. 106-120
  15. Kang, H., Bae, S.W. and Han, E.J. (1996) Water quality status of major stream in Daejeon city, Report of environmental research, Chungnam University, v.14, p. 27-41
  16. Kendall, C. and Colpen, T.B. (1985) Multisample conversion of water to hydrogen by zinc for stable isotope determination. Anal. Chem., v. 57, p. 1438-1440
  17. Kendall, C. and McDonnell, J.J (1998) Isotope Tracers in Catchment Hydrology, Elservier, Amsterdam, 839p
  18. Kim, K.H. and Lee, S.H. (2002) Oxygen and hydrogen isotopic composition of stream waters in the Han river basin, Econ. Environ. Geology, v.35, p. 113-120
  19. Kim, K.H. and Seo, H.Y. (1997) The geochemical characteristics of the river water in the Han river drainage basin, J. of Korean society of groundwater environment, v. 4, p. 130-143
  20. Kim, K.H. and Shim, E.S. (2001) Geochemical characteristics and origin of dissolved ions in the Han river, Econ. Environ. Geology, v.34, p. 539-553
  21. Lee, K.S. and Lee, C.B. (1999) Oxygen and hydrogen isotopic composition of precipitation and river waters in South Korea, J. of Geological Society of Korea, v. 35, p.73-84
  22. Lee, S.M., Kim, Y.S. and Na, K.C. (1980) Explanatory text of geologic map Daejeon sheet(1:50,000), Korea, Korea Research Institute of Geoscience and Mineral Resources, 26p
  23. Park, H.I., Lee, J.D. and Jeong, J.K. (1997) Explanatory text of geologic map Yusung sheet(1:50,000), Korea, Korea Research Institute of Geoscience and Mineral Resources, 21p
  24. Piper, A.M. (1944), A graphic procedure in the geochemical interpretation of water analyses, Transactions of American Geophysical Union, v. 25, p. 914-923 https://doi.org/10.1029/TR025i006p00914
  25. Ryu, J.S. Chang, H.W. and Lee, K.S. (2008) Hydrogeochemistry and isotope geochemistry of the Han River system : A summary, J. of Geological Society of Korea, v. 44 p.467-477
  26. Spence, J. and Telmer, K. (2005) The role of sulfur in chemical weathering and atmospheric $CO_2$ fluxes: Evidence from major ions, $d^{34}S_{SO4}$, and d34SSO4 in rivers of the Canadian Cordillera, Geochimica et Cosmochimica Acta, v. 69, p. 5441-5458 https://doi.org/10.1016/j.gca.2005.07.011
  27. Swart, P.K., Burns, S.J. and Leder, J.J. (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique, Chem. Geol. (Isotope Geoscience Section), v. 86, p.89-96 https://doi.org/10.1016/0168-9622(91)90055-2
  28. Thode, H.G. (1991) Sulfur isotopes in nature and the environment: an Overview, In: Krouse, H.R. and Grinenko, V.A.(eds), Stable isotopes: Natural and anthropogenic sulfur in the environment SCOPE 43, John Wiley & Sons, 1-26
  29. Vogel, J.C. (1993) Variablility of carbon isotope fractionation during photosynthesis, In: Stable isotope and Planet Carbon-Water Relations(Ehleringer, J.R., Hall, A.E. and Fraguhar, G.D., eds, 1993), p. 29-38, Academic press, San Diego, CA
  30. Yanaglsawa, F. and Sakai, H. (1983), Thermal decomposition of barium su1fate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements, Anal. Chem, v. 55, p. 985-987 https://doi.org/10.1021/ac00257a046
  31. Yu, J.Y. and Park, Y. (2004) Sulfur isotopic and chemical compositions of the natural waters in Chuncheon area, Korea, Applied Geochemistry, v. 19, p. 843-853 https://doi.org/10.1016/j.apgeochem.2003.10.011