References
- Baker, S. J., A. C. Preisinger, J. M. Jessup, C. Paraskeva, S. Mrakowitz, J. K. Willson, S. Hamilton, and B. Voge1stein (1990), p53 gene mutation occur in combination with 17p allelic deletions as late events in cololectal tumorigenesis, Cancer Res. 23, 717-722
- Hsu, I. C., R. A. Metcalf, T. Sun, J. A. Welsh, N. J. Wang, and C. C. Harris (1991), Mutational hotspot in the p53 gene in human hepatocellular carcinomas, Nature 350, 427-428 https://doi.org/10.1038/350427a0
- Sidransky, D., A. von Eschenbach, Y. C. Tsai, P. Jones, I. Summerhayes, F. Marshall, M. Paul, P. Green, S. R. Hamilton, and P. Frost (1991), Identification of p53 gene mutations in bladder cancers and urine samples, Science 252, 706-709 https://doi.org/10.1126/science.2024123
- Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris (1991), p53 mutations in human cancers, Science 253, 49-53 https://doi.org/10.1126/science.1905840
- Lane, D. P. (1992), Cancer. p53, guardian of the genome, Nature 358, 15-16 https://doi.org/10.1038/358015a0
- Dulic, V., W. K. Kau:frnann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed (1994), p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiationinduced G1 arrest, Cell 76, 1013-1023 https://doi.org/10.1016/0092-8674(94)90379-4
- el-Deiry, W. S., J. W. Harper, P. M. O 'Connor, V. E. Velculescu, C. E. canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, and Y. Wang (1994), WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis, Cancer Res. 54, 1169-1174
- Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren (1991), Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature 352, 345-347 https://doi.org/10.1038/352345a0
- Lowe, S. W., E. M. Schmitt, S. W. Smith, B. A. Osbome, and T. Jacks (1993), p53 is required for radiation-induced apoptosis in mouse thymocytes, Nature 362, 847-849 https://doi.org/10.1038/362847a0
- Vaziri, H., M. D. West, R. C. Allsopp, T. S. Davison, Y. S. Wu, C. H. Arrowsmith, G. G. Poirier, and S. Benchimol (1997), ATM-dependent telomere loss in aging human diploid fibrob1asts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase, EMBO J. 16, 6018-6033 https://doi.org/10.1093/emboj/16.19.6018
- Bond, J., M. Haughton, J. Blaydes, V. Gire, D. Wynford-Thomas, and F. Wyllie (1996), Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence, Oncogene 13, 2097-2104
- Crighton, D., S. Wilkinson, J. O ’Prey, N. Syed, P. Smith, P. R. Harrison, M. Gasco, O. Garrone, T. Crook, and K. M. Ryan (2006), DRAM, a p53-induced modulator of autophagy, is critical for apoptosis, Cell 126, 121-134 https://doi.org/10.1016/j.cell.2006.05.034
- Kastan, M. B., Q. Zhan, W. S. e1-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fomace Jr (1992), A mammalian cell cycle checkpoint pathway uti1izing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71, 587-597 https://doi.org/10.1016/0092-8674(92)90593-2
- Owen-Schaub, L. B., W. Zhang, J. C. Cusack, L. S. Angelo, S. M. Santee, T. Fujiwara, J. A. Roth, A. B. Deisseroth, W. W. Zhang, and E. Kruzel (1995), Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression, Mol. Cell Biol. 15, 3032-3040 https://doi.org/10.1128/MCB.15.6.3032
- Miyashita, T. and J. C. Reed (1995), Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell 80, 293-299 https://doi.org/10.1016/0092-8674(95)90412-3
- Budhram-Mahadeo, V., P. J. Morris, M. D. Smith, C. A. Midgley, L. M. Boxer, and D. S. Latchman (1999), p53 suppresses the activation of the Bcl-2 promoter by the Bm-3a POU fami1y transcription factor, J. Biol. Chem. 274, 15237-15244 https://doi.org/10.1074/jbc.274.21.15237
- Oda, E., R. Ohki, H. Murasawa, J. Nemoto, T. Shibue, T. Yamashita, T. Tokino, T. Taniguchi, and N. Tanaka (2000), Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis, Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
- Nakano, K. and K. H. Vousden (2001), PUMA, a novel proapoptotic gene, is induced by p53, Mol. Cell 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
- Mihara, M., S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, and U. M. Moll (2003), p53 has a direct apoptogenic role at the mitochondria, Mol. Cell 11, 577-590 https://doi.org/10.1016/S1097-2765(03)00050-9
- Hershko, A. and A. Ciechanover (1992), The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61, 761-807 https://doi.org/10.1146/annurev.bi.61.070192.003553
- Hochstrasser, M. (1996), Ubiquitin-depcndent protein degradation, Annu. Rev. Genet. 30, 405-439 https://doi.org/10.1146/annurev.genet.30.1.405
- Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda and A. Varshavsky (1989), A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243, 1576-1583 https://doi.org/10.1126/science.2538923
- Terrell, J., S. Shih, R. Dunn, and L. Hicke (1998), A fuction for monoubiquitination in the intemalization of a G protein-coupled receptor, Mol. Cell 1, 193-202 https://doi.org/10.1016/S1097-2765(00)80020-9
- Murray, A. (1995), Cyclin ubiquitination: the destructive end of mitosis, Cell 81, 149-152 https://doi.org/10.1016/0092-8674(95)90322-4
- Weake, V. M. and J. L. Workman (2008), Histone ubiquitination: triggering gene activity, Mol. Cell 29, 653-663 https://doi.org/10.1016/j.molcel.2008.02.014
- Scheffner, M., B. A. Wemess, J. M. Huibregtse, A. J. Levine, and P. M. Howley (1990), The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell 63, 1129-1136 https://doi.org/10.1016/0092-8674(90)90409-8
- Fakharzadeh, S. S., S. P. Trusko, and D. L. George (1991), Tumorigenic potential associated with enhanced expression of a gene that ís amplified in a mouse tumor cell line, EMBO J. 10, 1565-1569
- Courjal, F., M. Cuny, C. Rodriguez, G. Louason, P. Speiser, D. Katsaros, M. M. Tanner, R. Zeillinger, and C. Theillet (1996), DNA amplifications at 20q13 and MDM2 define distinct subsets of evolved breast and ovarian tumours, Br. J. Cancer 74, 1984-1989 https://doi.org/10.1038/bjc.1996.664
- Jones, S. N., A. E. Roe, L. A. Donehower, and A. Bradley (1995), Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53, Nature 378, 206-208 https://doi.org/10.1038/378206a0
- Montes, de Oca Luna R., D. S. Wagner, and G. Lozano (1995), Rescue of early embryonic lethalíty in mdm2-deficient mice by deletion of p53, Nature 378, 203-206 https://doi.org/10.1038/378203a0
- Itahana, K., H. Mao, A. Jin, Y. Itahana, H. V. Clegg, K. P. Bhat, V. L. Godfrey, G. I. Evan, and Y. Zhang (2007), Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase actívity in the mouse reveals mechanistíc insights into p53 regulation, Cancer Cell 12, 355-366 https://doi.org/10.1016/j.ccr.2007.09.007
- Zhang, Y., Y. Xiong, and W. G. Yarbrough (1998), ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways, Cell 92, 725-734 https://doi.org/10.1016/S0092-8674(00)81401-4
- Li, M., D. Chen, A. Shiloh, J. Luo, A. Y. Nikolaev, J. Qin, and W. Gu (2002), Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature 416, 648-653 https://doi.org/10.1038/nature737
- Mayo, L. D. and D. B. Donner (2001), A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus, Proc. Natl. Acad. Sci. USA 98, 11598-11603 https://doi.org/10.1073/pnas.181181198
- Siliciano, J. D., C. E. Canman, Y. Taya, K. Sakaguchi, E. Appella, and M. B. Kastan (1997), DNA damage induces phosphorylation of the amino tenninus of p53, Genes Dev. 11, 3471-3481 https://doi.org/10.1101/gad.11.24.3471
- Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives (1997), DNA damage-induced phosphory lation of p53 alleviates inhibition by MDM2, Cell 91, 325-334 https://doi.org/10.1016/S0092-8674(00)80416-X
- O'Connor, M. J., H. Zimmerrnann, S. Nielsen, H. U. Bemard, and T. Kouzarides (1999), Characterization of an EIA-CBP intεraction defines a novel transcriptional adapter motif (TRAM) in CBP/p300, J. Virol. 73, 3574-3581
- Honda, R. and H. Yasuda (1999), Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase acivity of Mdm2 for tumor suppressor p53, EMBO J. 18, 22-27 https://doi.org/10.1093/emboj/18.1.22
- Colaluca, I. N., D. Tosoni, P. Nuciforo, F. Senic-Matuglia, V. Galimberti, G. Viale, S‘ Pece, and P. P. di Fiore (2008), NUMB controls p53 tumour suppressor activity, Nature 451, 76-80 https://doi.org/10.1038/nature06412
- Vassilev, L. T., B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi and E. A. Liu (2004), In vivo activation of the p53 pathway by smallmolecule antagonists of MDM2, Science 303, 844-848 https://doi.org/10.1126/science.1092472
- Kojima, K., M. Konopleva, T. McQueen, S. O ’Brien, W. Plunkett and M. Andreeff (2006), Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcriptíondependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to tludarabine in chronic lymphocytic leukemia, Blood 108, 993-1000 https://doi.org/10.1182/blood-2005-12-5148
- Wu, X., J. H. Bayle, D. Olson, and A. J. Levine (1993), The p53-mdm-2 autoregulatory feedback loop, Genes Dev. 7, 1126-1132 https://doi.org/10.1101/gad.7.7a.1126
- Joseph, T. W., A. Zaika, and U. M. Moll (2003), Nuclear and cytoplasmic degradation of endogenous p53 and HDM2 occurs during down-regulation of the p53 response after multiple types of DNA damage, FASEB J. 17, 1622-1630 https://doi.org/10.1096/fj.02-0931com
- Bond, G. L., K. M. Hirshfield, T. Kirchhoff, G. Alexe, E. E. Bond, H. Robins, F. Bartel, H. Taubert, P. Wuerl, W. Hait, D. Toppmeyer, K. Offit, and A. J. Levine (2006), MDM2 SNP 309 accelerates tumor forrnation in a gender-specific and horrnone-dependent manner, Cancer Res. 66, 5104-5110 https://doi.org/10.1158/0008-5472.CAN-06-0180
- Hu, W., Z. Feng, L. Ma, J. Wagner, J. J. Rice, G. Stolovitzky, and A. J. Levine (2007), A Single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells, Cancer Res. 67, 2757-2865 https://doi.org/10.1158/0008-5472.CAN-06-2656
- Paulin, F. E., M. O’Neill, G. McGregor, A. Cassidy, A. Ashfield, C. W. Ali, A. J. Munro, L. Baker, C. A. Purdie, D. P. Lane, and A. M. Thompson (2008), MDM2 SNP309 is associated with high grade node positive breast tumours and is in linkage disequilibrium with a novel MDM2 intron 1 polymorphism, BMC Cancer. 8, 281 https://doi.org/10.1186/1471-2407-8-281
- Leng, R. P., Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J. M. Parant, G. Lozano, R. Hakem, and S. Benchimol (2003), Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation, Cell 112, 779-791 https://doi.org/10.1016/S0092-8674(03)00193-4
- Doman, D., I. Wertz, H. Shimizu, D. Amott, G. D. Frantz, P. Dowd, K. O ’Rourke, H. Koeppen and V. M. Dixit (2004), The ubiquitin ligase COPI is a critical negative regulator of p53, Nature 429, 86-92 https://doi.org/10.1038/nature02514
- Osterlund, M. T., L. H. Ang, and X. W. Deng (1999), The role of COP1 in repression of Arabidopsis photomorphogenic development, Trends Cell Biol. 9, 113-118 https://doi.org/10.1016/S0962-8924(99)01499-3
- Kato, S., J. Ding, E. Pisck, U. S. Jhala, and K. Du (2008), COP1 Functions as a FoxO1 Ubiquitin E3 Ligase to Regulate FoxO1-mediated Gene Expression, J. Biol. Chem. 283, 35464-35473 https://doi.org/10.1074/jbc.M801011200
- Doman, D., H. Shimizu, A. Mah, T. Dudhela, M. Eby, KO’rourke, S. Seshagiri, and V. M. Dixit (2006), ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage, Science 313, 1122-1126 https://doi.org/10.1126/science.1127335
- Sheng, Y., R. C. Laister, A. Lemak, B. Wu, E. Tai, S. Duan, J. Lukin, M. Sunnerhagen, S. Srisailam, M. Karra, S. Benchimol, and C. Arrowsrnith (2008), Molecular basis of Pirh2-mediated p53 ubiquitylation, Nat. Struct. Mol. Biol. 15, 1334-1342 https://doi.org/10.1038/nsmb.1521
- Hattori, T.,T. Isobe, K. Abe, H. Kikuchi, K. Kitagawa, T. Oda, C. Uchida, and M. Kitagawa (2007), Pirh2 promotes ubiquitin-dependent degradation of the cyclindependent kinase inhibitor p27Kip1, Cancer Res. 67, 10789-10795 https://doi.org/10.1158/0008-5472.CAN-07-2033
- Duan, S., Z. Yao, D. Hou, Z. Wu, W. G. Zhu and M. Wu (2007), Phosphorylation of Pirh2 by calmodulindependent kinase II impairs its ability to ubiquitinate p53, EMBO J. 26, 3062-3074 https://doi.org/10.1038/sj.emboj.7601749
- Brooks, C. L. and W. Gu (2006), p53 ubiquitination: Mdm2 and beyond, Mol. Cell 21, 307-315 https://doi.org/10.1016/j.molcel.2006.01.020
- Freedman, D. A. and A. J. Levine (1998), Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6, Mol. Cell Biol. 18, 7288-7293
- Chen, D., N. Kon, M. Li, W. Zhang, J. Qin, and W. Gu (2005), ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor, Cell 121, 1071-1083 https://doi.org/10.1016/j.cell.2005.03.037
- Zhong, Q., W. Gao, F. Du, and X. Wang (2005), Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis, Cell 121, 1085-1095 https://doi.org/10.1016/j.cell.2005.06.009
- Grossman, S. R., M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M. Howley, and D. M. Livingston (1998), p300/MDM2 complexes participate in MDM2-mediated p53 degradation, Mol. Cell 2, 405-415 https://doi.org/10.1016/S1097-2765(00)80140-9
- Grossman, S. R., M. E. Deato, C. Brignone H.M. Chan, A. L. Kung, H. Tagami, Y. Nakatani, and D. M. Livingston (2003), Polyubiquitination of p53 by a ubiquitin ligase activity of p300, Science 300, 342-344 https://doi.org/10.1126/science.1080386
- Yamasaki, S., N. Yagishita, T. Sasaki, M. Nakazawa, Y. Kato, T. Yamadera, E. Bae, S. Toriyarna, R. Ikeda, L. Zhang, K. Fujitani, E. Yoo, K. Tsuchimochi, T. Ohta, N. Araya, H. Fujita, S. Aratani, K. Eguchi, S. Komiya, I. Maruyama, N. Higashi, M. Sato, H. Senoo, T. Ochi, S. Yokoyama, T. Amano, J. Kim, S. Gay, A. Fukamizu, K. Nishioka, K. Tanaka, and T. Nakajima (2007), Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquuitin ligase Synoviolin, EMBO J. 26, 113-122 https://doi.org/10.1038/sj.emboj.7601490
- Yang, W., L. M. Rozan, E. R. McDonald 3rd, A. Navaraj, J. J. Liu, E. M. Matthew, W. Wang, D. T. Dicker and W. S. EI-Deiry (2007), CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation. J. Biol. Chem. 282, 3273-3281 https://doi.org/10.1074/jbc.M610793200
- Boutell, C. and R. D. Everett (2003), The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and ubiquitinates p53, J. Biol. Chem. 278, 36596-36602 https://doi.org/10.1074/jbc.M300776200
- Rajendra, R., D. Malegaonkar, P. Pungaliya, H. Marshall, Z. Rasheed, J. Brownell, L. F. Liu, S. Lutzker, A. Saleem, and E. H. Rubin (2004), Topors functions as and E3 ubiquitin ligase with specific E2 enzymes and ubiquitianates p 53, J. Biol. Chem. 279, 36440-36444 https://doi.org/10.1074/jbc.C400300200
- Boddy, M. N., P. S. Freemont, and K. L. Borden (1994), The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger, Trends Biochem. Sci. 19, 198-199 https://doi.org/10.1016/0968-0004(94)90020-5
- Roth, J., M. Dobbelstein, D. A. Freedman, T. Shenk, and A. J. Levine (1998), Nucleo-cytoplasrnic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein, EMBO J. 17, 554-564 https://doi.org/10.1093/emboj/17.2.554
- Barak, Y., T. Juven, R. Haffuer, and M. Oren (1993), Mdm2 expression is induced by wild type p53 activity, EMBO J. 12, 461-468
- Buschmann, T., S. Y. Fuchs, C. G. Lee, Z. Q. Pan, and Z. Ronai (2000), SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53, Cell 101, 753-762 https://doi.org/10.1016/S0092-8674(00)80887-9
- Khosravi, R., R. Maya, T. Cottlieb, M. Oren, Y. Shiloh, and D. Shkedy (1999), Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage, Proc. Natl. Acad. Sci. USA 96, 14973-14977 https://doi.org/10.1073/pnas.96.26.14973
- Dias, S. S., D. M. Milne, and D. W. Meek (2006), c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF, Oncogene 25, 6666-6671 https://doi.org/10.1038/sj.onc.1209671
- Pan, Y. and J. Chen (2003), MDM2 promotes ubiquitination and degradation of MDMX, Mol. Cell Biol. 23, 5113-5121 https://doi.org/10.1128/MCB.23.15.5113-5121.2003
- Foo, R. S., L. K. Chan, R. N. Kitsis, and M. R. Bennett (2007), Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2, J. Biol. Chem. 282, 5529-5535 https://doi.org/10.1074/jbc.M609046200
- Ofir-Rosenfeld, Y., K. Boggs, D. Michael, M. B. Kastan, and M. Oren, (2008), Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26, Mol. Cell 32, 180-189 https://doi.org/10.1016/j.molcel.2008.08.031
- Yang, J. Y., C. S. Zong, W. Xia, H. Yamaguchi, Q. Ding, X. Xie, J. Y. Lang, C. C. Lai, C. J. Chang, W. C. Huang, H. Huang, H. P. Kuo, D. F. Lee, L. Y. Li, H. C. Lien, X. Cheng, K. J. Chang, C. D. Hsiao, F. J. Tsai, C. H. Tsai, A. A. Sahin, W. J. Muller, G. B. Mills, D. Yu, G. N. Hortobagyi, and M. C. Hung (2008), ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation, Nat. Cell Biol. 10, 138-148 https://doi.org/10.1038/ncb1676
- Logan, I. R., V. Sapountzi, L. Gaughan, D. E. Neal, and C. N. Robson (2004), Control of human PIRH2 protein stability: involvement of TIP60 and the proteosome, J. Biol. Chem. 279, 11696-11704 https://doi.org/10.1074/jbc.M312712200
- I. R. Logan, L. Gaughan, S. R McCracken, V. Sapountzi, H. Y. Leung, and C. N. Robson (2006), Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer, Mol. Cell Biol. 26, 6502-6510 https://doi.org/10.1128/MCB.00147-06
- Von Amim, A. G. and X. W. Deng (1993), Ring finger motif of Arabidopsis thaliana COP1 defmes a new class of zinc-binding domain, J. Biol. Chem. 268, 19626-19631
- Stacey, M. G., S. N. Hicks, and A. G. von Amim (1999), Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of ArabidopsisCOP1, Plant Cell 11, 349-364 https://doi.org/10.1105/tpc.11.3.349
- Hou, Y., A. G. von Amim, and X. W. Deng (1993), A new class of Arabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development, Plant Cell 5, 329-339 https://doi.org/10.1105/tpc.5.3.329
- Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatan (1996), The transcriptional coactivators p300 and CBP are histone acetyltransferases, Cell 87, 953-959 https://doi.org/10.1016/S0092-8674(00)82001-2
- McDonald, E. R. 3rd and W. S. EI-Deiry (2004), Suppression of caspase-8- and -10-associated RlNG proteins rεsults in sensitization to death ligands and inhibition of tumor cell growth, Proc. Natl. Acad. Sci. USA 101, 6170-6175 https://doi.org/10.1073/pnas.0307459101
- Liao W, Q. Xiao, V. Tchikov, K. Fujita, W. Yang, S. Wincovitch, S. Garfield, D. Conze, W. S. EI-Deiry, S. Schutez, and S. M. Srinivasula (2008), CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation, Curr. Biol. 18, 641-649 https://doi.org/10.1016/j.cub.2008.04.017
- Moriuchi, H., M. Moriuchi, and J. I. Cohen (1994), The RING finger domain of the varicella-zoster virus open reading frame 61 protein is required for its transregulatory functions, Virol. 205, 238-246 https://doi.org/10.1006/viro.1994.1639
- Mullen, M. A., D. M. Ciufo, and G. S. Hayward (1994), Mapping of intracellular localization domains and evidence for colocalization interactions between the IE 110 and IE175 nuclear transactivator proteins of herpes simplex virus, J. Virol. 68, 3250-3266
- Canning, M., C. Boutell, J. Parkinson, and R. D. Everett (2004), A RlNG finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7, J. Biol. Chem. 279, 38160-38168 https://doi.org/10.1074/jbc.M402885200
- Diao, L., B. Zhang, J. Fan, X. Gao, S. Sun, K. Yang, D. Xin, N. Jin, Y. Geng, and C. Wang (2005), Herpes virus proteins ICP0 and BICP0 can activate NF-kappaB by catalyzing IkappaBalpha ubiquitination, Cell Signal. 17, 217-229 https://doi.org/10.1016/j.cellsig.2004.07.003
- Jr Haluska, P., A. Saleem, Z. Rasheed, F. Ahrned, E. W. Su, L. F. Liu, and E. H. Rubin (1999), Interaction between human topoisomerase I and a novel RING finger/ arginine-serine protein, Nucleic Acids Res. 27, 2538-2544 https://doi.org/10.1093/nar/27.12.2538
- Guan, B., P. Pungaliya, X. Li, C. Uquillas, L. N. Mutton, E. H. Rubin, and C. J. Bieberich (2008), Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1, J. Biol. Chem. 283, 4834-4840 https://doi.org/10.1074/jbc.M708630200
- Shaulsky, G., A. Ben-Ze'ev, and V. Rotter (1990), Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells, Olcogene 5, 1707-1711
- Shaulsky, G., N. Goldfinger M. S. Tosky, A. J. Levine, and V. Rotter (1991), Nuclear localization is essential for the activity of p53 protein, Oncogene 6, 2055-2065
- Giannakakou, P., D. L. Sackett, Y. Ward, K. R. Webster, M. V. Blagosklonny, and T. Fojo (2000), p53 is associated with cellular microtubules and is transported to the nucleus by dynein, Nat. Cell Biol. 2, 709-719 https://doi.org/10.1038/35036335
- Shaulsky, G., N. Goldfinger, A. Ben-Ze' ev, and V. Rotter (1990), Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis, Mol. Cell Biol. 10, 6565-6577 https://doi.org/10.1128/MCB.10.12.6565
- Middler, G., K. Zerf, S. Jenovai, A. Thulig, M. Tschodrich-Rotter, U. Kubitscheck, and R. Peters (1997), The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-deendent and lectin-inhibited, Oncogene 14, 1407-1417 https://doi.org/10.1038/sj.onc.1200949
- Stommel, J. M., N. D. Marchenko, G. S. Jimenez, U. M. Moll, T. J. Hope, and G. M. Wahl (1999), A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking, EMBO J. 18, 1660-1672 https://doi.org/10.1093/emboj/18.6.1660
- Lohrum, M. A., D. B. Woods, R. L. Ludwig, E. Balint, and K. H. Vousden (2001), C-terminal ubiquitination of p53 contributes to nuclear export, Mol. Cell Biol. 21, 8521-8532 https://doi.org/10.1128/MCB.21.24.8521-8532.2001
- Geyer, R. K., Z. K. Yu, and C. G. Maki (2000), The MDM2 RING-finger domain is required to promote p53 nuclear export, Nat. Cell Biol. 2, 569-573 https://doi.org/10.1038/35023507
- Carter, S., O. Bischof, A. Dejean, and K. H. Vousden (2007), C-terminal modifications regulate MDM2 dissociation and nuclear export of p53, Nat. Cell Biol. 9, 428-435 https://doi.org/10.1038/ncb1562
- Li, M., C. L. Brooks F. Wu-Baer, D. Chen, R. Baer, and W. Gu (2003), Mono-versus polyubiquitination: differential control of p53 fate by Mdm2, Science 302, 1972-1975 https://doi.org/10.1126/science.1091362
- Thrower, J. S., L. Hoffman, M. Rechsteiner, and C. M. Pickart (2000), Recognition of the polyubiquitin proteolytic signal, EMBO J. 19, 94-102 https://doi.org/10.1093/emboj/19.1.94
- Laine, A. and Z. Ronai (2007), Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1, Oncogene 26, 1477-1483 https://doi.org/10.1038/sj.onc.1209924
- Laine, A., I. Topisirovic, D. Zhai, J. C. Reed, K. L. Borden, and Z. Ronai (2006), Regulation of p53 localization and activity by Ubc13, Mol. Cell Biol. 26, 8901-8913 https://doi.org/10.1128/MCB.01156-06
- Kruse, J. P. and W. Gu (2008), MSL2 promotes MDM2 independent cytoplasrnic localization of p53, Epub ahead of print 2008 Nov 25
- Andrews, P., Y. J. He, and Y. Xiong (2006), Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function, Oncogene 25, 4534-4548 https://doi.org/10.1038/sj.onc.1209490
- Nikolaev, A. Y., M. Li, N. Puskas, J. Qin, and W. Gu (2003), Parc: a cytoplasmic anchor for p53, Cell 112, 29-40 https://doi.org/10.1016/S0092-8674(02)01255-2
- Oh, W., E. W. Lee, Y. H. Sung, M. R. Yang, J. Ghim, H. W. Lee, and J. Song (2006), Jabl induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2, J. Biol. chem. 281, 17457-17465 https://doi.org/10.1074/jbc.M601857200
- Marchenko, N. D., S. Wolff, S. Erster, K. Becker, and U. M. Moll (2007), Monoubiquitylation promotes rnitochondrial p53 translocation, EMBO J. 26, 923-934 https://doi.org/10.1038/sj.emboj.7601560
- Li, M., D. Chen, A. Shiloh, J. Luo, A. Y. Nikolaev, J. Qin, and W. Gu (2002), Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature 416, 648-653 https://doi.org/10.1038/nature737
- Mayr, G. A., M. Reed, P. Wang, Y. Wang, J. F. Schweds, and P. Tegtmeyer (1995), Serine phosphorylation in the NH2 terrninus of p53 facilitates transactivation, Cancer Res. 55, 2410-2417
- Barlev, N. A., L. Liu, N. H. Chehab, K. Mansfield, K. G. Harris, T. D. Halazonetis, and S. L. Berger (2001), Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases, Mol. Cell 8, 1243-1254 https://doi.org/10.1016/S1097-2765(01)00414-2
- Das, S., L. Raj, B. Zhao, Y. Kimura, A. Bemstein, S. A. Aaronson, and S. W. Lee (2007), Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation, Cell 130, 624-637 https://doi.org/10.1016/j.cell.2007.06.013
- Tanaka, T., S. Ohkubo, I. Tatsuno, and C. Prives (2007), hCAS/CSEIL associates with chromatin and regulates expression of select p53 target genes, Cell 130, 638-650 https://doi.org/10.1016/j.cell.2007.08.001
- Gu, W. and R. G. Roeder (1997), Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 https://doi.org/10.1016/S0092-8674(00)80521-8
- Lain, S., J. J. Hollick, J. Campbell, O. D. Staples, M. Higgins, M. Aoubala, A. McCarthy, V. Appleyard, K. E. Murray, L. Baker, A. Thompson, J. Mathers, S. J. Holland, M. J. Stark, G. Pass, J. Woods, D. P. Lane, and N. J. Westwood (2008), Discovery, in vivo activity, and mechanism of action of a smallmolecule p53 activator, Cancer Cell 13, 454-463 https://doi.org/10.1016/j.ccr.2008.03.004
- Liu, L., D. M. Scolnick, R. C. Trievel, H. B. Zhang, R. Marmorstein, T. D. Halazonetis, and S. L. Berger (1999), p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage, Mol. Cell Biol. 19, 1202-1209
- Le Cam, L., L. K. Linares, C. Paul, E. Julien, M. Lacroix, E. Hatchi, R. Triboulet, G. Bossis, A. Shmueli, M. S. Rodriguez, O. Coux, and C. Sardet (2006), E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation, Cell 127, 775-788 https://doi.org/10.1016/j.cell.2006.09.031
- Sykes, S. M., H. S. Mellert, M. A. Holbert, K. Li, R. Marmorstein, W. S. Lane, and S. B. McMahon (2006), Acetylation of the p53 DNA-binding domain regulates apoptosis induction, Mol. Cell 24, 841-851 https://doi.org/10.1016/j.molcel.2006.11.026
- Tang, Y., W. Zhao, Y. Chen, Y. Zhao, and W. Gu (2008), Acetylation is indispensable for p53 activation, Cell 133, 612-626 https://doi.org/10.1016/j.cell.2008.03.025
- Xu, P. and J. Peng (2008), Characterization of polyubiquitin chain structure by middle-down mass spectrometry, Anal. Chem. 80, 3438-3444 https://doi.org/10.1021/ac800016w
- Chan, W. M., M. C. Mak, T. K. Fung, A. Lau, W. Y. Siu, and R. Y. Poon (2006), Uboquitnation of p53 at multiple sites in the DNA-binding domain, Mol. Cancer Res. 4, 15-25 https://doi.org/10.1158/1541-7786.MCR-05-0097