DOI QR코드

DOI QR Code

수도권 지역 PM10의 PAHs 농도 특성

PAHs Concentrations of PM10 in Seoul Metropolitan Area

  • 홍상범 (제주대학교 화학과.기초과학연구소) ;
  • 강창희 (제주대학교 화학과.기초과학연구소) ;
  • 김원형 (제주대학교 화학과.기초과학연구소) ;
  • 김용표 (이화여자대학교 환경학과) ;
  • 이승묵 (서울대학교 보건대학원 환경보건학과) ;
  • 김영성 (한국외국어 대학교 환경학과) ;
  • 송철한 (광주과학기술원 환경공학과) ;
  • 정창훈 (경인여자대학 환경보건학부) ;
  • 홍지형 (국립환경과학원 대기총량과)
  • Hong, Sang-Bum (Department of Chemistry and Research Institute for Basic Sciences, Jeju National University) ;
  • Kang, Chang-Hee (Department of Chemistry and Research Institute for Basic Sciences, Jeju National University) ;
  • Kim, Won-Hyung (Department of Chemistry and Research Institute for Basic Sciences, Jeju National University) ;
  • Kim, Yong-Pyo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yi, Seung-Muk (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Ghim, Young-Sung (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Song, Chul-Han (Department of Environmental Science and Technology, Gwangju Institute of Science and Technology) ;
  • Jung, Chang-Hoon (Department of Environmental Health, KyungIn Women's College) ;
  • Hong, Ji-Hyung (Environmental Cap System Research Department, National Institute of Environmental Research)
  • 발행 : 2009.08.31

초록

The concentrations of PAHs in $PM_{10}$ fine particles were determined at two sites, which were Jongno, one of the urban core sites of Seoul, and Yongin, a downwind site of Seoul. The average concentration of PAHs in $PM_{10}$ was $19.92{\pm}18.49\;ng\;m^{-3}$ with the range of $1.28{\sim}81.22\;ng\;m^{-3}$ at Jongno site of Seoul from August 2006 to August 2007, and $14.06{\pm}9.96\;ng\;m^{-3}$ with the range of $1.66{\sim}31.84\;ng\;m^{-3}$ at Yongin site from September to November of 2006. In the results of monthly comparison, the concentration of PAHs in August was the lowest level of $3.23\;ng\;m^{-3}$, but the highest level of $46.24\;ng\;m^{-3}$ in January. The seasonal comparison showed the concentration in winter was higher by the factor of 11.9 than in summer. The concentrations of PAHs during a warm period (November${\sim}$March) increased as 5.1 times higher than those during a cold period (April${\sim}$October). The concentrations of PAHs were assumed to be largely attributed to the consumption of fossil fuels, temperature, mixing height, and photochemical reactions in Seoul metropolitan area.

키워드

참고문헌

  1. 김신도, 김동술, 조석연, 김영준, 이정주(2007) 대도시 대기질 관리방안 조사연구: 미세먼지 생성과정 규명과 저감대책 수립, 국립환경과학원 보고서 (RAL-0703114)
  2. 김용표, 강창희, 김영성, 김용준, 김 호, 송철한, 우정헌, 이승묵, 정창훈, 홍상범(2007) 수도권 미세먼지 오염현상 해석 및 이차먼지 생성변화율 예측, 국립환경과학원 보고서
  3. 김형섭, 김영성, 김종국(2006) 2002년 6월부터 11월까지 전주지역 대기 중 다환방향족 탄화수소의 특성, 한국대기환경학회지, 499-508
  4. 박찬구, 윤중섭, 어수미, 신정식, 김민영, 손종열, 모세영(2006) 서울지역 대기중 다환방향족탄화수소의 발생원별 기여도 평가, 한국대기환경학회지, 22(3), 287-295
  5. 백성옥, 최진수(1998) 대기 중 다환방향족탄화수소의 기체-입자상 농도분포에 미치는 주변 온도의 영향, 한국대기보전학회지, 14(2), 117-131
  6. 손정화, 황인조, 김동술(2000) 대기 중 PM-10의 오염원 추정을 위한 다환방향족탄화수소와 무기원소자료의 예비통계분석: 1996년 2월-6월까지 대규모 영통건설지역 주변을 중심으로, 한국대기환경학회지, 16(1), 11-22
  7. 에너지관리공단 (2009) 에너지 통계/에너지 소비실적: 2003년도 월별 에너지 (석탄, 석유, 도시가스) 소비량, http://www.kemco.or.kr/data/e_static/energy_chart/energy_static_view_main.asp
  8. 조기철, 이승일, 김달호, 허귀석, 김희강(1994) 도시대기부유 분진중 다환방향족 탄화수소의 농도 및 입경분포 특성, 한국대기보전학회지, 10(1), 57-63
  9. 한진석, 이민도, 임용재, 이상욱, 김영미, 공부주, 안준영, 홍유덕(2006) 수도권 지역에서 환경 대기 중 유해대기오염물질 (VOCs, Aldehydes, PAHs) 농도분포특성 연구, 한국대기환경학회지, 22(5), 574-89
  10. Bae, S.Y., S.M. Lee, and Y.P. Kim (2002) Temporal and spatial variations of the particle size distribution of PAHs and dry deposition fluxes in Korea, Atmospheric Environment, 36, 5491-5500 https://doi.org/10.1016/S1352-2310(02)00666-0
  11. Barale, R., L. Giromini, G. Ghelardini, C. Scapoli, N. Loprieno, M. Pala, F. Valerio, and I. Barrai (1991) Correlations beween 15 polycyclic aromatic hydrocarbons (PAH) and the mutagenicity of the total PAH fraction in ambient air particle in La Spezia (Italy), Mutation Research, 249, 227-241 https://doi.org/10.1016/0027-5107(91)90150-M
  12. Brinkman, G.L., J.B. Milford, J.J. Schauer, M.M. Shafer, and M.P. Hannigan (2009) Source identification of personal exposure to fine particulate matter using organic tracers, Atmospheric Environment, 43(12), 1972-1981 https://doi.org/10.1016/j.atmosenv.2009.01.023
  13. Daisey, J.M., M.H. Keyko, and T.J. Kneip (1979) Source identification and allocation of polycyclic aromatic hydrocarbon compounds in the New York city aerosol: methods and applications, in Polycyclic Aromatic Hydrocarbons. Edited by P.W. Jones and P. Leber, Ann Arbor Science, Ann Arbor, 201-215
  14. Dickhut, R.M., E.A. Canuel, K.E. Gustafson, K. Liu, K.M. Aezayus, S.E. Walker, G. Edgecombe, M.O. Gaylor, and E.H. Macdonald (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region, Environ. Sci. Technol., 34, 4635-4640 https://doi.org/10.1021/es000971e
  15. Gordon, G.E. (1988) Receptor models. Environ. Sci. Technol., 22, 1132-1142 https://doi.org/10.1021/es00175a002
  16. IARC (1983) IARC Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, Vol. 32, Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data, Lyon https://doi.org/10.1007/BF02894630
  17. Marr, L.C., K. Dzepina, J.L. Jimenez, F. Resin, H.L. Bethel, J. Arey, J.S. Gaffney, N.A. Marley, L.T. Molina, and M.J. Molina (2006) Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City, Atmos. Chem. Phys., 6, 1733-1745 https://doi.org/10.5194/acp-6-1733-2006
  18. Park, S.S., Y.J. Kim, and C.H. Kang (2002) Atmospheric poly-cyclic aromatic hydrocarbons in Seoul, Korea, At-mospheric Environment, 36, 2917-2924 https://doi.org/10.1016/S1352-2310(02)00206-6
  19. Rogge, W.L., L.M. Hildemann, M.A. Mazurek, G.R. Cass, and B.T. Simoneit (1991) Sources of fine organic aerosol, 1, Charbroilers and meat cooking operations, Environ. Sci. Technol., 25, 1112-1125 https://doi.org/10.1021/es00018a015
  20. Schauer, J.J. and G.R. Cass (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers, Environ. Sci. Technol., 34, 1821-1832 https://doi.org/10.1021/es981312t
  21. Schauer, J.J., W.F. Rogge, L.M. Hildemann, M.A. Mazurek, G.R. Cass, and B.T. Simoneit (1996) Source apportionment of airborne particulate matter using organic compounds as tracers, Atmospheric Environment, 30(22), 3837-3855 https://doi.org/10.1016/1352-2310(96)00085-4
  22. Zhou, J., T. Wang, Y. Huang, T. Mao, and N. Zhong (2005) Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China, Chemosphere, 61, 792-799 https://doi.org/10.1016/j.chemosphere.2005.04.002

피인용 문헌

  1. Regulation Standard of Fine Particles and Control Techniques of Emission Sources vol.29, pp.4, 2013, https://doi.org/10.5572/KOSAE.2013.29.4.486
  2. The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas vol.30, pp.5, 2014, https://doi.org/10.5572/KOSAE.2014.30.5.449
  3. Review on the Concentrations of Benzo[a]pyrene in the Indian Environment Since 1983 vol.37, pp.4, 2017, https://doi.org/10.1080/10406638.2016.1140658