DOI QR코드

DOI QR Code

The Current Distribution and Habitat Preferences of Hibernating Myotis formosus in Korea

  • Published : 2009.08.31

Abstract

We monitored 38 hibernation sites of Myotis formosus in South Korea and recorded the number of bats occupying each site and assessed the micro-climate at the sites during four winters from 2005 to 2009 at. The mean rock temperature of the bat roosting sites was $13.2{\pm}1.4^{\circ}C$ and the mean body temperature of the hibernating bats was $13.3{\pm}1.3^{\circ}C$. The number of hibernating bats was negatively related to the size of the entrance and positively related to the minimum ambient temperature and humidity in the site interior. More bats hibernated in roosts with smaller entrances and higher minimum ambient temperatures, and more bats selected sites presenting a narrow temperature range. This study showed that the internal environments of hibernacula of M. formosus were highly stable despite dramatic variation in the external environment.

Keywords

References

  1. Boyles JG, Dunbar MB, Storm Il, Brack V Jr. 2007. Energy availability influences microclimate selection of hibernating bats. J Exp Bioi 210: 4345-4350 https://doi.org/10.1242/jeb.007294
  2. Crampton LH, Barclay RMR. 1998. Selection of roosting and foraging habitat by bats in different-aged aspen mixed wood stands. Conserv Bioi 12: 1347-1358 https://doi.org/10.1046/j.1523-1739.1998.97209.x
  3. Dalquest WW, Walton DW. 1970. About bats. In Diurnal Retreats of Bats (Dlaughter BH, Walton DW, eds). Dallas, TX: Southern Methodist University Press. pp 162-187
  4. Fenton MB. 1997. Science and the conservation of bats. J Manunal 78:1-14
  5. Geiser F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Ann Rev Physiol 66: 239-274 https://doi.org/10.1146/annurev.physiol.66.032102.115105
  6. Humphries MM, Thomas DW, Speakman JR. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418: 313-316 https://doi.org/10.1038/nature00828
  7. Hutson AM, Mickleburgh SP, Racey PA. 2001. Microchiropteran bats:Global status survey and conservation action plan. Gland, Switzerland: mCN/SSC Chiroptera Specialist Group
  8. Jones AJ Mitchell, McLeish AP. 2004. The Bat Workers' Manual. Joint Nature Conservation Committee
  9. Kalcounis MC, Brigham RM. 1998. Secondary use of aspen cavities by tree-roosting big brown bats. J Wildl Manage 62: 603-611 https://doi.org/10.2307/3802336
  10. Kim SS and Yoo JC. 2004. Hibernacula characteristics of Cooperwinged bats (Myotis formosus). Kor J Nat Conserv 2: 76-88
  11. Kim SS. 2005. Hibernation ecology of Myotis formosus. MS thesis. Kyung Hee University, Seoul. 67 p
  12. Krebs Cl. 2001. Ecology. 5th ed. Benjamin Cummings, San Francisco
  13. Kunz TH. 1982. Roosting ecology. In: Ecology of Bats (Kunz TH, ed), Plenum Press, New York, pp 1-46
  14. Kunz TH, Lumsden LF. 2003. Ecology of cavity and foliage roosting bats. In Bat Ecology (Kunz TH, Fenton MB, eds). The University of Chicago Press, Chicago, pp 3-89
  15. McNab BK. 1974. The behavior of temperate cave bats in a subtropical environment, Ecology 55: 943-958 https://doi.org/10.2307/1940347
  16. O'Donnell CFJ. 2000. Conservation status and causes of decline of the threatened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae), Mammal Rev 30: 89-106 https://doi.org/10.1046/j.1365-2907.2000.00059.x
  17. Pierson ED. 1998. Tall trees, deep holes, and scarred landscapes: conservation biology of North American bats. In Bat Biology and Conservation (Kunz TH, Racey PA, eds). Smithsonian Institution Press, Washington DC, pp 309-325
  18. Rabe MJ, Morrell TE, Green H, deVos JC Jr, Miller CR. 1998. Characteristics of ponderosa pine snag roosts used by reproductive bats in northern Arizona. J Wildl Manage 62: 612-621 https://doi.org/10.2307/3802337
  19. Richter AR, Humphrey SR, Cope JB, Brack VJr. 1993. Modified cave entrances: thermal effect on body mass and resulting decline of endangered Indiana bats (Myotis sodalis). Conserv Biol 7:407-415 https://doi.org/10.1046/j.1523-1739.1993.07020407.x
  20. Speakman JR. Thomas DW. 2003. Physiological ecology and energetics of bats. In Bat Ecology (Kunz TH, Fenton MB, eds.), The University of Chicago Press, Chicago, pp 430-490
  21. Thomas DW, Dorais M, Bergeron JM. 1990. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J Mammal 71: 475-479 https://doi.org/10.2307/1381967
  22. Tidemann CR, Flavel SC. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in southeastern Australia. Aust Wildl Res 14: 459-473 https://doi.org/10.1071/WR9870459
  23. Tuttle MD, Kennedy J. 2002. Thermal requirements during hibernation. In: The Indiana Bat: Biology and Management of an Endangered Species (Kurta A, Kennedy J, eds). Bat Conservation International. pp 68-78
  24. Tuttle MD, Stevenson D. 1982. Growth and survival of bats. In: Ecology of Bats (Kunz TH, ed). Plenum Press, New York, pp 105150
  25. Vonhoff MJ, Barclay RMR. 1996. Roost-site selection and roosting ecology of forest-dwelling bats in southern British Columbia. Can J Zool 74: 1797-1805 https://doi.org/10.1139/z96-200
  26. Vonhoff Ml, 1996. Roost-site preferences of big brown bats (Eptesicus fuscus) and silver-haired bats (Lasionycteris noctivagans) in the Pend d'Oreille Valley in southern British Columbia. In Bats and Forests Symposium (Barclay RMR, Brigham RM, eds). Working paper 23/1996. Research Branch, Ministry of Forests, Victoria, Canada. pp 62·80
  27. Webb PI, Speakman JR, Racey PA. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool 74: 761-765 https://doi.org/10.1139/z96-087
  28. Zar JH. 1999. Biostatistical Analysis, 4th ed, Prentice Hall International, London

Cited by

  1. ) in the temperate zone: how does the phylogenetic origin of a species affect its hibernation strategy? vol.91, pp.2, 2013, https://doi.org/10.1139/cjz-2012-0145
  2. Hibernating Bats and Abandoned Mines in the Upper Peninsula of Michigan vol.21, pp.4, 2014, https://doi.org/10.1656/045.021.0407
  3. Echolocation Call Structure of Fourteen Bat Species in Korea vol.31, pp.3, 2015, https://doi.org/10.5635/ASED.2015.31.3.160