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A NOTE ON LINEAR COMBINATIONS OF AN
IDEMPOTENT MATRIX AND A TRIPOTENT MATRIX

HONGMEI YAO™*, YANLING SUN, CHUANG XU AND CHANGJIANG BU

ABSTRACT. Let A; and Ay be nonzero complex idempotent and tripotent
matrix, respectively. Denote a linear combination of the two matrices by
A = ¢1 Ay + cgAs, where ¢1, ¢o are nonzero complex scalars. In this pa-
per, under an assumption of A; Ay = A3 Ay, we characterize all situations
in which the linear combination is tripotent. A statistical interpretation
of this tripotent problem is also pointed out. Moreover, In [2], Baksalary
characterized all situations in which the above linear combination is idem-
potent by using the property of decomposition of a tripotent matrix, i.e.
if Ay is tripotent, then Ay = By — By, where Bf = B, v =1, 2 and
B1By = B3B; = 0. While in this paper, by utilizing a method different
from the one used by Baksalary in [2], we prove the theorem 1 in [2] again.
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1. Introduction

Let C and Cy,;, be the sets of complex numbers and n X n complex matrices,
respectively. It is assumed throughout this paper that ¢y, ca € C are both
nonzero and A, € C,,, is idempotent matrix while Ay € C,,,, is tripotent matrix,
ie. A} = A; and A3 = 4,. Denote a linear combination of the two matrices by

A=A+ oAy, (1)

where ¢y, ¢y are nonzero complex scalars.

Because the idempotency or tripotency of a linear combination of some idem-
potent or tripotent matrices has its statistical applications, the problems of
characterizing some and even all situations where a linear combination of some
idempotent or tripotent matrices is an idempotent or a tripotent matrix are
studied extensively,(see [1]-[4]). In [1}, Baksalary studied the idempotency of
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linear combinations of two idempotent matrices, in [2], Baksalary gave the suf-
ficient and necessary conditions of the idempotency of linear combination of an
idempotent matrix and a tripotent matrix by using the property of decompo-
sition of a tripotent matrix, i.e. if A, is tripotent, then Ay = By — Bs, where
B? = B,;, i =1, 2 and BBy = ByB; = 0, in [3], Baksalary characterized all
situations in which the linear combination of commuting tripotent matrices is
tripotent. Inspired by the above work, this paper deals with the problem of char-
acterizing all situations in which the linear combination (1) with an assumption
A1 Ay = AjAq is a tripotent matrix in section 2. While in section 3, by utilizing
a method different from the one used by Baksalary in [2], we gave a new proof
of the theorem 1 in [2].

It should be emphasized that an essential motivation of this paper originates
from statistics, a fact that if A; and A, are nxn real symmetric matrices and X is
an x 1 real random vector having the multivatiate normal distribution N, (0, I),
where I stands for the identity matrix of order n, then necessary and sufficient
conditions for the quadratic forms X 4;X and X "A2X to be distributed as a
Chi-square variable and as a difference of two independent Chi-square variables
are the idempotency property A? = A; and the tripotency property A3 = As,
respectively, see [5] and [6].

2. Main result

As already pointed out, the main result of this section provides a complete
solution to the problem of characterizing all situations in which a linear combi-
nation (1) with an assumption Ay Ay = A3 A, is a tripotent matrix.

Lemma 1. [7] Suppose A is an idempotent matrix in Cp,, then there exists a
nonsingular matrix P € C,,, such that

A=PI;®0)P™", where s = rankA.

Lemma 2. [7] Suppose A is a tripotent matriz in Cpy, then there exists a
nonsingular matrix P € Cy,,, such that

A=PI,®—-I,®0)P ', wherep+ q=rankA.

Theorem 1. Let A; and Ay be nonzero complex idempotent and tripotent ma-
triz, respectively, and satisfying condition A1Ay, = AsA,. Let A be a linear
combination of the form (1), with nonzero ¢1, ca € C. Then the following list
comprises characterization of all cases in which A is a tripotent matriz:

(1) A1Ay = —eAy A2, holds along withcy =1, ca =€ or ¢y = =1, ¢a = —¢,
where ¢ = +1;

(i4) A1Az = —eA;q, holds along withc; = 2, ca =€ or¢g = =2, ¢ = —¢,
where £ = +1;
(i11) A1As = As, holds along with ¢y = 1,¢; = Lore =30 = —% or

— 1 _ 1 _ 1 1
01——5,62— 5 07"01—7§,C2:—§.
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Proof. The sufficiency is easy to prove by direct calculation. Now, we only prove
the necessity. From Lemma 2, there exists a nonsingular matrix P € C,,, such
that Ay = P(I, ® ~I, ® 0)P~!, where p + ¢ = rankA; and the note '@’ is
a direct sum. Since A; A4, = A4, and A% = Aj, A; can be represented as
A = P(Xh © X2 ® X3)P ! with X? = X) € Cpy, X2 = X, € Cy, and
X2 =X3¢€Cy where t =n— p—g. So the tripotency of the linear combination
(1) is equivalent to finding the conjunction of the tripotency of ¢;X; + calp,
ClXQ — CQIq and Cng.

In the consecutive steps, we establish necessary and sufficient conditions en-
suring that this conjunction is satisfied, expressed in terms of scalars ¢;, ¢o and
matrices Xy, Xp, X3, and then reexpress these conditions in terms of scalars
c1, ¢ and matrices Ay, A,.

The first step is to characterize all situations in which the linear combination
c1.X1 + a1y, is tripotent. Similar to the above, by Lemma 1, X; = Q(I, ©0)Q !
where @ € Cp, is a nonsingular matrix and s = rankX;.

Case 1. Suppose s =0, then X; = 0, from the tripotency of ¢; X + calp, we
have ¢ = %1 and ¢; € C\{0};

Case 2. Suppose s = p, then X, = I, it is easy to get ¢; + ¢z = 0 or
¢+ ca ==+l

Case 3. Suppose 0 < s < p, in order to ensure the tripotency of ¢; X1 + colp,
the scalars should satisty ¢; = ~1, e =lorecy = -2, ca=1lore; =1, ¢g = —1
orcy = —2, ¢cg = —1.

Concluding the above three cases, we have the sufficienct and necessary con-
ditions for the tripotency of ¢; X; + caI, as follows:

X1 =0, holds along with ¢; = +1 and ¢; € C\{0}; (2)
X1 = I,, holds along with ¢; +c3 = 0 or ¢y + ¢o = +1; (3)
X1 =Q(; 0)Q™", holds along with ¢; € {—&,~2¢}, ¢; =¢ 4)
where 0 < s =rankX; < p, and € = +1.

Similar to the first step, we get the sufficienct and necessary conditions for
the tripotency of ¢; Xy — 21, as follows:

X9 =0, holds along with ¢; = +1 and ¢; € C\{0}; (5)
Xo = I, holds along with ¢; ~ca =0 or ¢; — co = +£1; (6)
Xo = Q(I; ®0)Q™ ", holds along with ¢; € {e, 2}, ca=¢ ()

where 0 < k =rankXs, < p, and € = £1.

The third step is characterizing all situations in which the tripotency of ¢; X3,
there are two situations:

X3 = 0, holds along with ¢; € C\{0}, ¢ € C\{0}; (8)

X3 # 0,holds along with ¢; = +1, ¢3 € C\{0}. (9)
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The present step is to establish necessary and sufficient conditions ensuring
the simutaneous tripotency of ¢1 X1 + c2lp, c1 X2 — 21, and ¢; X3. This aim is
accomplished by combining each of (2)-(4) with (5)-(7), then combining each of
the corresponding results with (8) and (9).

Observing that each combination of ((2), (5), (8)), ((3), (6), (9)), ((3),(7)),
((4),(6)) and ((4), (7)) is a contradiction.

Combining (2) with a version of (6) having ¢; — ¢z = 0 and (8) , yields ¢; =
c2 = +1 and A3 A2 = —A; AZ. The same characterization follows by combining
(2) with a version of (7) having ¢; = c2 = +1 and (8) or (9). Combining (3) under
c1+co = 0 with (5) and (8), entails ¢; = —c2 = +1 and A1 Ay = A; A%, The same
characterization follows by combining (4) under ¢; = —¢p = +1 with (5) and (8)
or (9). Hence, consequently taking ¢ = 1, we obtain the characterization (i).
Combining (2)with (5) and (9), or combining (2) with (6) and (9) also get the
situation (i).

Combining again (2) with a version of (6) having ¢; — ¢z = +1 and (8),
yields ¢ = 2, e = 1l or¢; = =2, ¢g = —1 and A;As = —A;. The same
characterization follows by combining (2) with (7) under ¢; = 2, ¢ = 1 or

1 = —2, ¢ = —1 and (8). Combining (3) under ¢; + ¢ = +1 with (5)
and (8) , entails ¢; = —2, ¢ = lorcy = 2, ¢ = —1 and A1 4, = A;.
The same characterization follows by combining (4) under ¢; = —2, ¢ = 1 or

¢ =2, ¢ = —1 with (5) and (8). Hence, consequently taking € = 1, we obtain
the characterization (ii).

Combining (3) with (6) and (8) can get the characterization (iii). The proof
is completed. 0

Theorem 1 shows that a linear combination of two quadratic forms in normal
variables, one distributed as a Chi-square variable and another distributed as a
difference of two independent Chi-square variable can also be distributed as a
difference.

3. Additional result

In this section, we characterize all situations in which a linear combination
(1) is idempotent with a new method different from the method used in [2].

Theorem 2. Let Ay and Ay be nonzero complex idempotent and tripotent ma-
triz, respectively. Let A be a linear combination of the form (1), with nonzero
c1, ¢ € C. Then the following list comprises characterization of all cases in
which A is an idempotent matriz:
(1) A1As + A Ay + ca A3 — Az = 0, holds along with ¢y = 1, ¢ € C\{0}, and
when ¢co # +1, p=q, where p 4+ q = rankAs;
(ll) A1A2 + A2A1 = Al + %(A% + Az), holds along with C1 = 2, Co = —1,‘
(ZZZ) A1As + Az Ay = %(A] + 2A5 — A%), holds along withc, = %, Cco = %,’
(iv) A1As + AsA; = — Ay + %(Ag — A2), holds along with c; =2, ¢; =
(v) A1Az + Az Ay = A%+ 24, — Ay, holds along with ¢y = 5, ¢ = —1.
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Proof. The sufficiency is obvious. Now, we only prove the necessity. From
Lemma 2, there exists a nonsingular matrix P € Cp, such that Ay = P(I, @
—I, ®0)P~!, where p + ¢ = rankA, and the note ‘@' is a direct sum.

Let

By1 By Bis
Ay =P | Byy By By | P! (10)
B3y Bz B

where By, € Cp , Bis € Cpq, B3 & Opt, By € qu, By € qu, By €
Cyt, B3y € Cyp, Bsy € Ciy, Bz € Cyy. From A? = Ay, we know the following
relations:

B}, + Bi;Bj; + ByBri = By (11)
where 4,4,k € {1,2,3},and i # j # k,
BiiBij + BijBj; + BigBrj = B (12)

where ¢, j, k€ {1,2,3}, and i + j # k.
Taking the form Ay, Ay into (1), and from A? = A and equations(11), (12),
we have

ci{er 4 2¢; — 1)Byy = ca(1 — e) 1, (13)

c1{er —2¢9 — 1)Bag = —call + e2)1y, (14)

ci{er — By =0, ey(cr — 1)Byy =0, (e —1)Bss =0, (15)
cr(er +eg—1)Bis =0, ¢r(ep +e2 — 1)Bgy =0, (16)
ci{er —c2 —1)Baz =0, e1(cq — ¢a — 1) B3z = 0. (1n

Case 1. Suppose ¢q + 2c2 ~ 1 = 0, and from (13), we have cp{1 — ¢3) = 0,
then ¢y = 1, ¢; = —1. Combining ¢; =1, ¢; = —1 with equations (14)-(17), it
entails

1
Bi2=0, Big =0, By =90, B31 =0, Bz =0, B3z =0, B33 =0, Baz = )§Iq.

The result contradicts with the equation (11) where ¢ = 2. And the same
contradiction by ¢; — 2¢, — 1 = 0.

Case 2. Suppose ¢y = 1, because of ¢z # 0, then ¢; +c0~1#£0, ¢y —ea — 1 #
0, c1+2¢c0 — 1 75 0. So

14 1—¢co

B3 =0, By = 0, Biy = 0, Bag =0, Boy = _Q—Iq, By = B [p.
Hence, take the values of these By;, 4,7 € {1,2,3} into equation (11), we have
1—c2 1 —c?
By By = 21, B Big = 1 21, (18)

2
333 - BBSy
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then yield the relation between A, and Ay, i.e. AjAy + AsAy + A2 — Ay =
0; when ¢ # +£1, and from (18), we can know p = ¢. So we complete the
characterization of (i).

Case 3. Suppose ¢c1+cy=1,thenc; —c3 —1#0, c;+2ca—1#0, ¢; —1#
0, c7—2c2—1#0, s0

: 2—-c
Bi2 =0, By3 =0, B3z =0, B3z =0, Byy =0, By1 = Ip, Baz = 30, “I.
Taking these values into equation(11), we have
2 — C1\2 2 — C1
I, =—— 19
( 3(31 ) 4 3¢y @ ( )

B3B3 =0, B3B3, =0,

from equation (19), we get ¢; =2, co = —lore; = %, ey = %

When ¢; =2, ¢z = —1, entails A1 Ay + A2 A; = A; + $(A3 + Az), we finish
the characterization of (ii).

When ¢; = Cy = %, ylelds AAy + A A, = %(Al + 245 — A%), it is the
form (iii).

Case 4. Suppose ¢1 —co =1,thenecy +co—1#0, ¢; —2c0~1#0, ¢ —1#
0, c14+2co—1#0,50

1
21

2 — C1
361

B2 =0, Big=0, B31 =0, B33 =0, Byy =0, Boa =1, Bi1 = I

Similar to the above case, we can prove the situations (iv) and (v).
Case 5. Suppose ¢; —1#0, ¢c; +¢c3 —1#0, ¢1 —ca —1 # 0, then we have
B’ij = 07 (’L 7é .ja Z)] = {15273})7 B33 = Oa

c2(1 — ¢2) ca(1+ c2)

B = e — B e —
H 01(61 + 262 — 1) P 22 Cl(Cl — 262 — ].) ©
from equation (11), yields
1- 1-—
call—c2) o, l-ca) . (20)

61(01+202—1) P 61(61 +262‘1) B

(— 62(1 +Cz)
cier —2c,— 1) 7

When ¢y = 1, from equation (21), we get ¢; = 1 or ¢; = 2, which contradict
with what we have supposed. The same ¢; = —1 is also a contradiction.

When ¢; # £1, from equations (20) and (21), by direct calculation, we have
cL=13, C2=—3o0rc = 1, ¢ = 1, which also contradict with what we have
supposed. So we finish the proof. (]

- (21)

62(1 + 62) )2 _
61(61 — 262 - 1) 4
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