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EXISTENCE OF SOLUTIONS OF NONLINEAR TWO-POINT
BOUNDARY VALUE PROBLEMS FOR 2NTH-ORDER
NONLINEAR DIFFERENTIAL EQUATION

YONGXIN GAO* AND RENFEI WANG

ABSTRACT. In This paper we shall study the existence of solutions of non-
linear two point boundary value problems for nonlinear 2nth-order differ-
ential equation

v = fty, sy B)
with the boundary conditions
go(y(a),y'(a), -,y (a)) = 0,1 (5" (0), 4"V (a)) = 0,
ho(y(e),¥/ (€)) = 0, hi (5 (), 5"+ (€)= 06 = 2,3, , 20— 2).
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1. Introduction

We assume through out this paper that

(H,) The function f(t,yo, %1, ,Yan_1) is continuous on |a, c] X R*".

{H2) Every solution of initial value problems for nonlinear 2nth-order differ-
ential equation

y(2n) = f{ta yayia Ty y(2n_l)) (1)

extends to [a, ¢] or becomes unbounded on its greatest existence interval.
Imitating Ref.[1], give the following definition:

Definition. If a function (t) € C?"{a, ¢], satisfying

‘p(Zn)(f) < f(f7@(t)7pl(t)3 e 790(2’”71)(0):@ <t<g
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that ¢(t) is said to be an upper solution of Eq.(1)on [a, ]; If a function 9(t) €
C?"[a, |, satisfying

¢(2n) 2 f(tﬂ/](t): wl(t)7 e 71/)(2”‘1)(0)’0' S t S C,
then 4(t) is said to be a lower solution of Eq.{1) on [a, c].

By use of Kamke—theorem!?! and imitating the proof of lemma 4 in Ref.[3],it
is not difficult to prove the following lemma.

Lemma 1. Suppose that (Hy) and (Hs) hold. If a sequence of functions fm(t,
Yo, Y1, s Y2n—1) (m = 1,2,---) is continuous on [a,c] x R*, and converges
uniformly to f(t,v0,Y1, - ,Yan—1) on any compact subset of [a,c| x R?", besides
Jthe sequences formed by y,, (t), a solution of the equation y*™ = f.(t,y,9/, -,
Y@1Y and its derivatives y! (t), v (t), - - - ,yﬁ"ﬁ)(t) exist and are uniformly
bounded on [a,c] then there is a solution y(t) of Eq.(1) on [a,c] and a subse-
quence {Ym, (1)} of {ym(t)} such that {yﬁ,?,c (t)} converges uniformly to y® (t)(i =
0,1,---,2n 1) on |a,c|.

2. Two point boundary value problems

For convenience, give the following conditions first:

(A1) Function f(t,y0,v1, - - ,Y2n—1) is nonincreasing in yo; (¢ = 1,2, --- ,n—2)
and nondecreasing in yo and yo;41(z = 0,1,--- ,n — 2) for fixed t, y2n—2 and
Yon—-1-

(A3) There are upper and lower solutions ¢(t) and ¥(t) of Eq.(1) on [a,(]
such that ' _

(1) < e(8); (1) < () = 1,2, n—1);
PN () < D) = 0,1, 0 = 2).

(As) Function go(yo, y1,%2, - - , Y2n—3) is continuous on R?"~2 nondecreasing
in y2;+1(¢ = 0,1,---,n — 2) and nonincreasing in yz; {¢ = 1,2,---,n — 2) for
fixed yo, and satisfies

go(#(a), ¢’ (a), - , ¥ (a)) = 0= go(p(a), ¢'(a), - - , " *(a))

(A4) Function g1(z,y) is continuous on R?, nonincreasing in y for fixed z,

and satisfies

91" (a), 3" D(a)) = 0 = 92 ("2 (a), o Va)).
(A5) Function ho(z,y) is continuous on R?, nondecreasing in z for fixed y,
and satisfies
ho(¥(c),¥'(c)) = 0 = ho(p(c), ¢'(c)).
(Aq,) Functions h;(x,y)(i = 2,3,---,2n — 2) are continuous on R?, and non-
increasing in y for fixed z, and satisfies

hi(® (), 90D () = 0 = hi(®(0), "V (0)).
The following lemma follows in a routine way from the Shauder fixed-point
theorem.



Existence of solutions of nonlinear two-point boundary value problems

Lemma 2. Suppose that (H1) holds , if f is bounded on |a,c] x R?"

boundary value problem

Y& = f(t,y, 9,y D)

y(a) = a0,y (a) = azp 2,y (c) = cs(i = 1,2, -

has a solution.

Lemma 3. Suppose that (H), (

Hg), (Al) and (AQ) hold. If

p(a) < ag < 9(a), Y =D(a) < azn > < P (a);

PP (c) < ez < 9P (c)
P (0) < ey <PFHD(e) (1=0,1,---

then the BVP Eq.(1), (2) has a solution y(t) satisfying

o(1) < y(t) < b(0);
v (1) <y @0

on la,cl.

Proof. For m = 1,2,--.
following functions:

f(tvyozyla"'
t7 Y1y -1} =
fm(t, 9o, 91 Yon—1) { Fltovo.tn, -

) and (t7y0ayla Tt

fm(ta Yo, Y1,
+ Yan—2— "I (1)
l4+yan—2—pn=2 (1)
fm(t7y07ylv e
'l/)(zn_2)(t) < Yon—
fm(t7 Yo, Y1,
Bl O et e
1+ =2 () —yan 2’

fm27z,—2 (tv Yo, Y1, - - 7y2n71) -

Finan s (G Y0, Y1, s Y2n—1)

fm2n—2 (t7 Yo, Y1, -
Yon—s > P ();

fm271—2 (t7 Yo, Y1, Y2n—2, y2n71>a
90(27%3)(75) < Yon—3 < Q/}(27143)(15);

fmzn -2 <t7 Yo, Y1, -
Yon—3 < @(2nﬁ3) (t)

(i=1,2,---,n

TG R
¢(2H—l)( ) < y(22+1)( ) < w 2'L+1)(t) (’L = O’ 1,. .

s y2n~1) € [a’a

ay2n72yy2n—1)7
s Y2an—2,M - SgNY2n—1), |[Yon—1| > m

1467
then the
1) 3)
,n—2).
,n—1); (4)
,n—2).

c] x R*", define the

|y2n-1| S m

s Yan—3, @ D(1), yan—1)
Yan—2 > 9P (t);

s Yon—2, y2n~1)7
2 < (),

y Yon—3, 7/1(27172) (t)7 y2n—1)

Yon—2 < w(zniz)(t)

s Yon—4, ’(/}(2”_3)@)7 Yan—2, y2n—1)7

y Yon—4, ¢(2n‘3)(t>a Yon—2, yQTL*l))

fmg(tay07¢/(t)7y27"' s Yon— 1)37/1 >¢/( )
S (890,91, 520 1) = § Fna (B Y0, Y1, Yon—1), ©'(8) <y <o (8)
me(t7y07(10/(t)?y2a"' y Yon— 1)7y1 <<pl(t)
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fﬂn (ta 1/)(75), Y1, ,y2n~1)1 Yo > w(t)

Fm(t7 Yo, Y1, ay2n—1) - fm1 (ta Yo, Y1, )y2n—1)7 QP(t) S Yo S T/J(t)
fm1 (tv QD(t), Yy oo s y2n71)7 Yo < QO(t)
Obviously, for any m € N, function Fp,,{t,yo, %1, - ,Y2n—1) is continuous and

bounded on [a,c] x R?™. By lemma 2, the BVP
y(2n) = Fm(t7 Y, y,7 Tt ’y(anl))
4(0) — a0, 4 D(a) = azm_z, 4V (c) — ci(i = 1,2, -+, 2n —2)
has a solution ¥, (t)(m = 1,2,---).
Let N = max{max, q |¢®" D(t)|, maxp, o [#@"~(¢)[}, it is not difficult to
prove that if m > N, then
PEB(t) <y () < BP0, te o] (5)
In fact, if (5) is invalid, there is no harm in setting the right inequality is not
true (the case that the left inequality of (5) is not true can be proved in the same
way). i.e. there is a f € [a, ] such that y%nd)(f) > (2"=2)(#), the opposite
inequality holds for ¢ = a, ¢, so yﬁf"_” (t) — 4,0(2"_2)(75) has a positive maximum
n (a,c), say at tp, thus
Y2 (to) > (k) Y (ko) = " D(t), Y (to) < 0™ (to)
(6)
On the other hand, according to the definition of F,,, and the monotonicity of f
and (6), we have

ygn)(to) - W(Qn)(to) > Fm(t07 Ym,, yvlna T aygnil)) - J;(toé)% %0/» '(2' ) 72(;0(2n—1))
;o (2n—1) Y {to) =" (t0)
> fm (tO, ¥ y P ) + 1+y,(3"72)(t0)~<p(2"*2) (t0)
~f(t07 2 (pla e 7(»0(2”_1))

332 (19)— @2 (t0)
= 1498 (t0) -2 (to)

this is contradicts (6), hence (5) is true . But {(3) holds, then it implies that
ot) < yml®) b(t)
PP <y o) (1=1,2,---,n-1)
FEH) < ) < P (=01, n-2)
Consequently, ¥ = Y, (t)(m > N) is a solution of 2™ = f,,(t, 4,9/, -,y V)
satisfying (2). By lemma 1, the proof of lemma3 can be completed without much
difficulty. ]

Theorem 1. Suppose that (H1),(Hs),(A1),(A2) and (Asz) hold. If

¢(2"_2)(a) < @op_a < cp(Q"_Q)(a);w(%)(c) < g < w(zi)(c)(i =1,2,---,n—1);
PP () < egipn <PPH()(i =0,1,-- ,n —2),

then the BVP

>0

IN NN

y(2n) = f(t7 Y, Z//, e ,y(2n71))’
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i 2n—3 _ 2n—2 _
go(y(a), ¥/ (a),- -,y (@) = 0, y®""?(a) = azn 2,

'ym (=c{i=1,2,--,2n—2) (7)

has a solution y(t) satisfying (4) on [a,c].

Proof. For any s such that ¢(a) < s < ¢(a), by lemma 3, the BVP
YO = f(ty gy )

y(a) = 5,4 2(a) = agn_2,yV(c) = ci(i = 1,2,- -+, 2n — 2)
has a solution y,(t) satisfying

e(t) < ys(t) < ()
W) < g < ¢ (=12 om0 1)
¢y < YTV < (1) (i=0,1,-,n—-2)

on [a,¢f. Let n(s) = {ys(t) : p(a) < s < y(a)}. Obviously, 7(s) is non-empty.
There are two cases to consider:

(1) p(a) = ¥(a)

As
?/h‘(a’) = <,o(a)7 ngi) ((L) < 99(2i) (CL) (7/ = 17 27 s, 2)7
ngi+L) (a> > QP(%) (a) (L = 07 1> e, — 2)
and (As), it is known that

90(ys(a), ¥(@), -+, u*" (@) = go(pla), ¢ (a), -+, *"P(a)) = 0
On the other hand , as

ys(a) = ¥(a), ¥ (a) > ¢ (a) (i =1,2,--- ,n—2),

Y (@) < (@) (=01, 0 2)
and (As), we have

gO(ys (a‘)7 y;(&), e 7?/5927&73)(0*)) < gO(Qﬁ(a)a 1//"(“)7 T 7w(2n73)(a)) =0
Hence
Qo(ys((l), y/s(a’)r e ’y£2nw3)(a)) =0

This implies that if p(a) = (a), the BVP Eq. (1), (7) has a solution y(t)
satisfying (4) on [a, d].

(I1) p(a) < (a)

If the theorem were not true, then for any ys(t) € w(s),ys(t) would not be a
solution of BVP Eq. (1), (7). Thus

gO(ys (CL), y/e<a)7 o 7y£2'n—3) ((L)) # 0 (8)

From what we have proved for case (I) and from (8), we know that
() go(ys(a), ys(a), - - ’ng;H;(a)) >0 if ys (1) € 7(p(a))
(i4) go(ys (@), vi(a), -+ 9™V @) <O it (1) € 7((0))
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Let = {ys(t) : ys(t) € (s) and go(ys(a),y}(a), -+, 55~ (a)) > 0}, then
E is nonempty, putting so = sup{ys(a) : ys(t) € E}.
By the definition of sg, there exists y,(t) € E(m = 1,2,---) satisfying
Ym(a) = $m — so{m — 00), by lemma 1, the BVP
y(2n) - f(ta Y, y,a T ,y(ZTL*l))
y(a) = s0,y°" 2 (a) = asn—2,y7(c) = & (i =1,2,---,2n — 2)
has a solution yo(t) satisfying

o(t) < wol(t) < 9
$ON(H) < y((,%_) (t) < ¢ (i=1,2,--,n— 1);
o) < @) < @@ ((=0,1,--,n—2).

As go(ym(a), v, (a), - -,y (a)) > 0 and (8) holds,

go(wo(a), yh(a), -, (@) > 0, ie. yo(t) € B, s0 so < ¥(a).
If we use yo(t) to replace the upper solution ¢(¢) in lemma 3,and the lower
solution still use ¢(¢). By lemma 3, if
yo(a) < 5 < P(a); ¥ D) < azn2 < 45" ()
PP (e) < e <y ()i =1,2,-+-,n — 1);
vy 0 < oy < WV =0,1,n - 2).
then the BVP
Y = f(t, gy, YY)
y(a) = 5,47 () = azn 2,97 (c) = ci(i = 1,2,--- ,2n — 2)
has a solution §,(t) satisfying

vo(t) < Ts(t) 0
Pe@) < ) < W WE=1,2-n-1)
i < BT < WP (=01, 0 - 2)

on [a, c]. Let 7(s) = {ys(t) : vo(a) < s < (a)}, Clearly, 7(s) is non-empty.

Owing to sp < 9(a), there exist a positive integer N such that so + 1/N <
1¥(a), therefore, for m > N we have so + 1/m < t(a). By lemma 1, there is a
subsequence {Fm, (t)} of {Fm(t)} C 7(so +1/m) which converges uniformly to a
solution go(t) of the BVP.

y(2n) = f(t7 Y, yla T y(2n71))’
y(a) = s0,y*" P(a) = azn—2, 4" (c) = c;(i = 1,2, ,2n ~ 2)

on [a, c] that satisfies

w(t) < Tolt) < Pt
v < gl () < u () (=120 ,m- 1)
i M < wTVe) < eI (=01, 0 -2).
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By the definition of sp and (8), we have

9o(To(a), Tp(a), -, 55" (@) < 0. (9)

On the other hand, yo(a) = go(a), y$* (a) > ) (i=1,2,---,n—2),
y(()zzﬂ)(a} < g}ngl)(a) (i=0,1,---,n—2) and (A43) hold, then

90(G0(a), To(a), - -, 752" (@) = go(wola), vh(a), -,y (a)) > 0

which contradicts (9), hence, for p{a) < ¥(a), the BVP Eq.(1),(7) has a solution
y(t) satisfying (4) on [a, c]. O

Imitating the proof of theorem 1, it is not difficult to obtain the following
theorems.

Theorem 2. Suppose that (Hy), (Hs), (A1), (A2), (A3) and (A4) hold. If
P (e) < ey < ¢Pe) (i=1,2,-+,n—1),
PPV < egipr <P () (1=0,1,--,n— 2).
then the BVP
Yy = gy, 7:g(?n*l))
go(y(a), g (@), -,y (a) = 0,9y P (a),y*" V(a)) = 0,
YD) =e (1=1,2,---,2n—2)
has a solution y(t) satisfying (4) on la, d].
Theorem 3. Suppose that (Hy), (Ha), (A1)- (As) and (A4¢,)(i = 2,3,---,2n~2)
hold, then the BVP
y(2ﬂ§ = f(t,y, Yy, y(2n—1))
go(y(a),y/ (a), -+ y*" D (a) = 0,01 (4" D (a),y®" V(@) = 0,
ho(y(e), y' () = 0, hy(yP (), () =0 (i=12,3,--+,2n—~2).
has a solution y(t) satisfying ({) on [a, €.
Corollary 1. Suppose that {H1), {H2), (A1) and (A2) hold. If

2n—3 2n-3 ‘
3 e =t 3 apa)
=0 =0
2n—1 2n—1 '
Z agpt® (@) = bap—p = Z aqy (7’)(11.),
i=2n—2 1=2n—2

cop(c) + e’ (c) = do = cop(c) + c1¢'(c),
ey (e) + e () = di = i (e) + cipie (@) = 2,3, -+, 20— 2),
where Coy A2i41 > 0(% = 0,1,' o, — 2), Aop—1, 025 <0 (’L = 1,2,~ RN 2),
Ci+1 < 0 (Z = 2, 3, e ,277/ — 2),’ Zf:o—g {a,| % 0,’ iagn_ﬂ + ’(L‘anli 7& 0,
leol + ei|l # 0, el + e #0,(6=2,3,- -+ ,2n —2), |cgs| + |e2iga| #0
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and |coit1| + |c2its| # 0 = 1,2,--- ,n — 2), then Eq.(1) with the boundary
conditions
aoy(a) + a1y/(a) + - - + azn—3y*"*)(a) = bo,
a2n—2y(2n_2) ((1,) + a2n71y(2n_1)(af) = an_g,
coy(c) + c1y'(c) = do, ciy™P (¢) + iy V() = d; (i =2,3,---,2n - 2),
has a solution y(t) satisfying (4) on [a,c].
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