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ABSTRACT. In this paper, we introduce a relaxed hybrid-typen- f-a-pseudomo-
notonicity. By using the KKM-technique, we establish some existence re-
sults for set-valued variational-like inequalities with 7- f-a-pseudomonotone
mappings in reflexive Banach spaces.

AMS Mathematics Subject Classification : 49J40, 90C33.
Key words and phrases : Reflexive Banach space, n-coercive, n-hemiconti-

nuous, 7-f-a-pseudomonotone, relaxed n- f-a-pseudomonotone, Fan-KKM
Theorem.

1. Introduction and preliminaries

A monotone concept of a defined mapping is very important together with the
continuity and the convexity in nonlinear analysis including variational inequal-
ity problems, complementarity problems, optimization problems, programming
problems, equilibrium problems, game theory and so on.

Many authors have proposed some important generalizations of monotonic-
ity such as pseudomonotonicity, relaxed monotonicity, n-a-monotonicity, n-f-
monotonicity and quasi-monotonicity, see [1-3, 5-6, 9-14] and the references
therein. In [14] Verma studied a class of variational inequalities with relaxed
monotone operators. Recently, Fang and Huang [5] defined a relaxed n-a-
monotone concept and Bai et al. [1] defined a relaxed n-a-pseudomonotone
concept for single-valued mappings. For set-valued mappings, Kang et al. [10]
defined a relaxed 7-f-a-pseudomonotone concept, which generalizes monotone
concept for single-valued mappins in Fang et al. and Bai et al..

Inspired and motivated by [1, 5, 10|, in this paper we introduce a more gen-
eralized new concept of relaxed n-f-a-pseudomonotone mappings with respect
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to hybrid-type mappings. By using the KKM-technique, we establish some ex-
istence results of solutions to set-valued variational-like inequalities with - f-a-
pseudomonotone mappings in reflexive Banach spaces. Our results are general-
izations of many existing works of [1, 3, 5, 7, 8, 10].

Let E be areal reflexive Banach space with the dual space E* and (-, -) denote
the pairing between E and E*. Let K be a nonempty subset of FE and 2¥ denote
the family of all nonempty subsets of E.

Definition 1.1. A set-valued mapping T : K — 2F" s said to be relaxed
7-f-a-pseudomonotone with respect to the second argument of a hybrid-type
mapping N : K x E* — E* if there exist a mapping n : K x K — E and
functions f : K x K — R, a : E — R with a(t2) = k(t)a(z) for z € E, where

k(t .
k: (0,00) — (0,00) is a function with }ir% -~ = 0, such that for any z,y € K,

(N(@,u), n(s,)) + fg.2) > 0 for all u e T(a)
implies

<N($,v), n(y, ac)> + fly,z) > aly—z) forall v e T(y).

Remark 1.1. If N(z,u) = v and N(z,v) = v in Definition 1.1, then we have
the following pseudomonotone concept defined in [10];
Forall z,y € K

<Ua n(y, 37)> + f(y,z) > Ofor all u € T(x)
implies

<v, n{y, :U)> + fly,z) > aly—=z) for all v € T(y).

Remark 1.2. If T' is a single-valued mapping and k(t) = P for p > 1, then
we have the following relaxed 7-a-monotone concept (i) defined in [5] and the
following relaxed 7-a-pseudomonotone concept (ii) defined in [1];

(i) For any z,y € K

(T(@) = T@W), n@,p) > a(z—y),

(ii) For any z, y € K,

(Tw), n@.y)) > 0 implies (T(z), n(z,)) > ofz ).
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2. Existence results

In this paper, we consider the following two hybrid-type set-valued variational-
like inequalities in reflexive Banach spaces;

(Stampacchia-type)
(i) Find z € K satisfying
<N(x,u),77(y, .’L‘)> + f(y,z) = 0for y € K and u € T(z). (1.1)

(Minty-type)
(ii) Find z € K satisfying

<N(m,v),77(y,3;)> + fly,z) > aly —z) fory € K and v € T'(y). (1.2)

Definition 2.1. Let K be a nonempty convex subset of E. Let T : K — oF”
and 17 : K X K — E be mappings. T is said to be n-hemicontinuous if for any
z,y € K, a mapping g : [0,1] — 2® defined by

g(t) - U <ut7 77(21/, x)>7 where Ty =2 + t(y - iC)
w €T (x)

is upper semicontinuous at 0%.

Definition 2.2. Let 7 : K — 28" N: KxE* - E*, n: K x K — F be
mappings and f : K x K — RU {400} be a proper function. T is said to be
n-coercive with respect to f if there exists an zo € K such that for all u € T'(x)
and ug € T(x0).
<N(£L',U) —_N(anu(]% 77(3“75130>>+f($,$0) 00
lin(zo, z)]|

whenever ||z|| — co.

Definition 2.3. [4] A mapping F : K — 2F is said to be a KKM-mapping if for
any finite subset {x1,2a,...,2,} C K, co{z1,22,..., 2, C |J F(x;), where
i=1

k3
co{x1, 22, ..., 2y} denotes the convex hull of {z),22,...,2,}.

Fan-KKM Theorem. [4] Let K be a nonempty subset of a Hausdorff topolog-
ical vector space E and let F : K — 2F be a KKM-mapping. If F(z) is closed
in B for every x € K and compact for some zo € K, then

(] Flx) # 0.

c€EK

We discuss existence of solutions to (1.1) in a reflexive Banach space.
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Theorem 2.1. Let K be a nonempty closed convex subset of a real reflezive
Banach space E. Let T : K — 2" be an n-hemicontinuous and relazed n-f-
a-pseudomonotone set-valued mapping with respect to the second argument of a
mapping N : K x E* — E*. Assume that

(i) n(z,y) +nly,2) = 0 and f(z,y) + fly,2) =0 for all z,y € K;
(ii) z — n{z,-) and z — f(z,-) are convez.

Then x € K is a solution of (1.1) if and only if it is a solution of (1.2).
Proof. 1f z is a solution of (1.1), by Definition 1.1 it is a solution of (1.2).
Conversely, suppose that z € K is a solution of (1.2) and y € K is any point.

Let
xr = ty+ (1—t)x, t€[0,1], then z; € K.

It follows from (1.2) that, for us € T(xy),
(N(@,u), (o)) + f@e,2) > aler — )

aft(y —z))
= k{t)aly — x). 2.1)

By conditions (i) and (ii), we have
(N (@, u0), mi@,2)) + f(a1,2)
= (N(@,u), nlty + (1= t)z,2)) + f(ty + (1~ t)z, )
< (N (@), n(y,2)) + (1= (N (z,w), (e, 2)) 4 t/(,2) + (L 0f(z,2)

= t|(N(@,w), n(y,2)) + f(v,2)]- (22)
It follows from (2.1) and (2.2)

(VG w0, nf ) + fa) > “Dagy ) (2.3
for all y € K, ug € T(x).

Since T is 7-hemicontinuous, letting ¢ — 0 in {2.3), we get
(N(z,u), n{y,z)) + fly,z) > 0, for ally € K and u € T(z).
Therefore ¢ K is a solution of (1.1). tJ

Theorem 2.2. Let K be ¢ bounded closed conver subset of a reflexive Ba-
nach space E. Let T : K — 2F" be an n-hemicontinuous and relazed n-f-
a-pseudomonotone mapping with respect to the second argument of ¢ mapping
N: K x E* — E*. Assume that

(i) n(@,y) +n(y,z) =0 and f(z,y) + f(y,x) =0 for all z,y € K;

(i) @ n(x, ) and x v f(x,-) are convex and lower semicontinuous;
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(iii) a : B — R is weakly lower semicontinuous, i.e., for any net {xg} in E
converging weakly to xg,

a(zo) < limgo(zg).
Then there exists at least one solution for (1.1).
Proof. For any y € K, define two set-valued mappings F, G : K — 2F as follows
F(y) = {o e K (N(w,u), n(y,2)) + fly.2) > 0,ueT()],
() = {z e K (N@v), nly.2) + [4,2) > aly =)0 €T,

We claim that F' is a KKM mapping. If F is not a KKM mapping, then there
exists {y1,y2,...,Yn} C K such that

Co{yl7y2a e 7yn} ¢ U F(yz)7

n
e., there exists a yo € co{yi,¥2,...,Un}, SO, Yo = Ztiyz-, where t; > 0,
i=1

nyztz—l bUtyogquz
=1
By the deﬁnltlon of F, we have

<N(yo, ), 1y, v0) ) + F(yi,30) <0, for some v € T(yo),

fori=1,2,...,n. It follows from conditions (i)—(ii) that

0= <N(yg,v), U(yo,y0)> + f(v0, yo)
<N Y0, ), (thyuyo)> +f(itiyiay0)

t:{N(y0, ), 7(ye %0)) + Y _ tif (Yi: vo)

=1

£ (N o, v), iy 10)) + S35, v0))

|

I IA
° i 1M

<

b

for some v € T(yo), which is a contradiction. This implies that F' is a KKM
mapping. Now we prove that

F(y) c G(y), forally € K.
For any given y € K, letting z € F(y), we have
(N(2,u), n(y,2)) + fly,x) > 0forueT(z)
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Since T' is relaxed 7-f-a-pseudomonotone,

(N(@v), nw,2)) + fu,7) > aly—z) for v € T(y)
It follows that = € G(y), so
F(y) C G(y), forall y € K,

which implies that G is also a KKM mapping.
On the other hand, let (23) be a net in G(y) converging weakly to o, then
for all v € T(y),

(N(@sv), nly,20)) + fl,25) > oly — zp).

Since x — n(-,z) and x — f(-,z) are upper semicontinuous, and « is weakly
lower semicontinuous, it follows that

<N(wﬁyv), n(y, r5)> + f(y,25)
an<N(xg, n(y,zs >+hmﬁf Y, z3)
T 5 (N, 0), o, 20)) + fv.29))

tim s ((N (@, ), n(y,0) + £(9, 7))
lim gofy — zp)
> oy — o).

It follows that xz¢ € G(y), which shows that G(y) is weakly closed for all y € K.
Since K is bounded closed and convex, K is weakly compact, so G(y) is weakly
compact in K for each y € K. It follows from Fan-KKM Theorem and Theorem

v

v

zp)
)

v

v

2.1 that
N Fw = ()G # 0
yeEK yeK
Hence, there exists at least one solution for (1.1). O

Theorem 2.3. Let K be a nonempty unbounded closed convex subset of a reflex-
e Banach space E, and a set-valued mapping T : K — 25" be n-hemicontinuous,
relazed n- f-a-pseudomonotone with respect to the second argument of a mapping
N:KXE" —FE" and f: K x K — RU {+00} be a proper function. Assume
that
(1) n(z,y) +n(y,z) =0 and f(z,y) + f(y,z) =0 for all z,y € K;

(ii) =+ n(zx,-) and z — f(z,-) are convex and lower semicontinuous;

(iii) a: £ — R is weakly lower semicontinuous;

(iv) T is n-coercive with respect to f.
Then there exists at least one solution for (1.1).
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Proof. For r > 0, let
B, — {ycE: |yl <r}.
Consider the following problem: Find z, € K N B, such that
<N(a:r,ur), n(y,xr)> + fly,z,) > Oforye KNB,, (2.4)

and u, € T(x,). ,
By Theorem 2.2, we know that problem (2.4) has one solution z, € K N B;.

Take z¢ whose norm ||zl is less than r in the coercive conditions (iv). Then
o € KN B, and

<N(:I;r,u,.), n(xo,xr)> + flzo, ) = 0 for ur € T(x,). (2.5)
By condition (i) we get
(N (@p, we), (w0, 2) )+ Flo, 22)
= — (N(@r,u) = N(@r, uo), n(er,20)) + F(20,27) + (N (@r, u0), (o, ,))
< (N w) = N@p o), n@esa0)) + flao.a) + [N @ruo)l, [n(er,zo)]

- _ (N(2r,ur) — N(zp, %), n(Tr, 20)) + fl@r, To) 2010
IoGer, ol gt + I a0

IA

for u, € T(x,) and ug € T'(x¢).
If ||z,|| = r for all , we may choose r large enough so that the above inequality
and the n-coercivity of T' with respect to f imply that

<N(9cmur), n(xo,xr)> + f(zg,z,) <0,

which contradicts (2.5). So there exists » such that ||z,|| < r. For any y € K,
we can choose 0 < € < 1 small enough such that

xr +e(y — ) € KN B
It follows from (2.4) that
0 < (N(oru), nlar + ey~ 2),)) + flan + ey —ar), )
< (1= (N (@), 0w 20)) + (1= €)f (2, 20) + (N (@0, ur) 0y, )
+ef(y @)
= e[ (N G@ryur), n(y,20) + Fly,20)]
which implies that

<N(.’L’r,u7-), 77(2/; xr)> + f(y7 :1:7’) 2 0)
for y € K and w, € T(z,). This completes the proof. ]
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Remark 2.1. (1) If T is continuous on finite dimensional subspaces, the con-
clusions of Theorems 2.1-2.3 are also true.

(2) Theorems 2.2 and 2.3 improve and generalize the known results of Hart-

man and Stampacchia [8] and the corresponding results of [1,3,5,7,9— 11, 14].
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