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VARIATIONAL DECOMPOSITION METHOD FOR SOLVING
SIXTH-ORDER BOUNDARY VALUE PROBLEMS

MUHAMMAD A. NOOR AND SYED TAUSEEF MOHYUD-DIN*

ABSTRACT. In this paper, we implement a relatively new analytical tech-
nique by combining the traditional variational iteration method and the
decomposition method which is called as the variational decomposition
method (VDM) for solving the sixth-order boundary value problems. The
proposed technique is in fact the modification of variatioanal iteration
method by coupling it with the so-called Adomian’s polynomials. The
analytical results of the equations have been obtained in terms of conver-
gent series with easily computable components. Comparisons are made
to verify the reliability and accuracy of the proposed algorithm. Several
examples are given to check the efficiency of the proposed algorithm. We
have also considered an example where the VDM is not reliable.
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1. Introduction

In this paper, we consider the general sixth-order boundary value problems
of the type

v (z) = f(2,y), a<w<b (1)
with boundary conditions
yla) = Ay y'(a) = Ay 3y (a) = 43,
y() = By, y'(b)=B, " (b)=58,

where f = f (z,y), is a given continuous, linear or nonlinear function, f (z,y) €
C'la.b] is real and A and B; are real finite constants. The sixth-order boundary
value problems are known to arise in astrophysics; the narrow convecting layers
bounded by stable layers which are believed to surround A-type stars may be
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modeled by sixth-order boundary-value problems [4-13, 27, 28, 30-34]. Glatz-
maier also noticed that dynamo action in some stars may be modeled by such
equations see, [12]. Moreover, when an infinite horizontal layer of fluid is heated
from below and is subjected to the action of rotation, instability sets in [30-34],
when this instability is of ordinary convection than the governing ordinary dif-
ferential equation is of sixth-order, see [4-13, 27, 28, 30-34] and the references
therein. The literature of numerical analysis contains little on the solution of
the sixth-order boundary value problems [3-12, 34]. Theorems which list the
conditions for the existence and uniqueness of solutions of such problems are
thoroughly discussed i by Agarwal [1]. Baldwin [5, 6] developed non numerical
techniques for solving such problems. However, numerical methods of solutions
were introduced implicitly by Chawla and Katti [8]; although the authors focused
their attention on fourth-order boundary value problems. Finite difference meth-
ods of solutions for such problems were also developed by Boutayeb and Twizell
[7]. A second-order method was developed in [33] for solving special and gen-
eral sixth-order boundary value problem. In a later work [32], finite difference
method of order two was established to handle such problems. Sextic spline
solutions of linear sixth order boundary-value problems were derived by Siddiqi
and Twizell [30] using polynomial splines of degree six where the spline func-
tion values at the mid knots of the interpolation interval and the corresponding
values of the even order derivatives are related through consistency relations.
However, the performance of the techniques used so far is well-known that it
provides solutions at grid points only. Moreover, the existing techniques require
huge computational work.

He [14-18] developed the variational iteration method (VIM) for solving linear,
nonlinear, initial and boundary value problems. It is worth mentioning that
the origin of variational iteration method is traced back to Inokuti, Sekine and
Mura [19], but the real potential of the VIM was explored by He. Since the
beginning of 1980s, the Adomian’s decomposition method has been applied to
a wide class of functional equations [34, 35]. In these methods the solution is
given in an infinite series usually converging to an accurate solution, see [1, 2,
14-19, 21-25, 29, 34-36] and the references therein. Recently, decomposition
method [34], Ritz’s method based on variational theory [13], non-polynomial
spline technique [4] and Sinc-Galerkin method [11] have been applied for the
solution of sixth-order boundary value problems. Noor and Mohyud-Din [23-
28] employed homotopy perturbation method, variational iteration method and
the variational iteration decomposition method for solving sixth-order and some
other higher-order boundary value problems. developed techniques.

In this paper, we apply the variational decomposition method (VDM) which
is an elegant combination of variational iteration and the Adomian’s decompo-
sition methods to solve the sixth-order boundary value problems. The proposed
technique is in fact the modified variational iteration method where the varia-
tioanal iteration method is coupled with Adomian’s polynomials. This idea has
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been used by Abbasbandy [1, 2] for solving quadratic Riccati differential equa-
tion and Klein-Gordon equation and by Noor and Mohyud-Din [24] for solving
the eighth-order boundary value problems. The basic motivation of this paper
is to apply the variational decomposition method (VDM) for solving the sixth-
order boundary value problems. It is shown that the variational decomposition
method provides the solution in a rapid convergent series. We write the cor-
rect functional for the sixth-order boundary value problem and calculate the
Lagrange multiplier optimally via variational theory. The Adomian’s polynomi-
als are introduced in the correct functional and evaluated by using the specific
algorithms. See also [34, 35] and the references therein). Finally, the approxi-
mants are calculated by employing the Lagrange multipliers and the Adomian’s
polynomial scheme simultaneously. The use of Lagrange multiplier reduces the
successive application of the integral operator and minimizes the computational
work. Moreover, the selection of the initial value is done by exploiting the con-
cept of modified decomposition method. The VDM solves effectively, easily and
accurately a large class of linear, nonlinear, partial, deterministic or stochastic
differential equations with approximate solutions which converge very rapidly
to accurate solutions. Several examples are given to illustrate the reliability
and performance of the proposed method. We have also considered an example
where the proposed variational decomposition method (VDM) is not reliable.

2. Variational iteration method

To illustrate the basic concept of the technique, we consider the following
general differential equation

Lu+ Nu=g(x), (2)

where L is a linear operator, N a nonlinear operator and g(x) is the inhomoge-
neous term. According to variational iteration method [1, 2, 14-19, 21-25, 29,
36], we can construct a correct functional as follows

Unt1 (T) = up (2) + /01‘ A (Lup, (8) + Nuy, (s) — g (8)) ds, (3)

where A is a Lagrange multiplier [14-19], which can be identified optimally via
variational iteration method. The subscripts n denote the nth approximation,
u, is considered as a restricted variation. ie. du, = 0; (3) is called as a
correct functional. The solution of the linear problems can be solved in a single
iteration step due to the exact identification of the Lagrange multiplier. The
principles of variational iteration method and its applicability for various kinds
of differential equations are given in [14-19]. In this method, it is required first
to determine the Lagrange multiplier A optimally. The successive approximation
Up41, 1 2> 0 of the solution u will be readily obtained upon using the determined
Lagrange multiplier A and any selective function ug, consequently, the solution
is given byu = lim,_,, u,. For the convergence criteria and error estimates of
variational iteration method, see Ramos [29].
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3. Adomian’s decomposition method

Consider the differential equation [34, 35} of the type
Lu+ Ru+ Nu=g, (4)

where L is the highest-order derivative which is assumed to be invertible, R
is a linear differential operator of order lesser order than L,Nurepresents the
nonlinear terms and g is the source term. Applying the inverse operator L~ 'to
both sides of (4) and using the given conditions, we obtain

u=f— L7 (Ru) — L™} (Nu), (5)
where the function f represents the terms arising from integrating the source

term g and by using the given conditions. Adomian’s decomposition method
[34, 35] defines the solution u (x) by the series

u(z) = Z un (), (6)
n=0

~where the components u, (z)are usually determined recurrently by using the
relation

up = f,
= f—L Y (Ruy) — L™ (Nug), k>0.

The nonlinear operator F' {u)can be decomposed into an infinite series of poly-
nomials given by

Uk 41

Fu)y=Y A,
n=0

where are the so-called Adomian’s polynomials that can be generated for various
classes of nonlinearities according to the specific algorithm developed in [34, 35]
which yields

1 dn SN
An:(m) (N>F<§(>\U1))A'O n:O,l,Q,

4. Variational decomposition method (VDM)

To illustrate the basic concept of the variational decomposition method, we
consider the following general differential equation (1)

Lu+ Nu=g(x)

where L is a linear operator, N a nonlinear operator and g(x) is the forcing
term. According to variational iteration method [1, 2, 14-19, 21-25, 29, 36], we
can construct a correct functional as follows

Unt1 () = uy (z) + /Ox A(Luy, (8) + Ny, (s) — g (s)) ds,
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where A is a Lagrange multiplier [14-19], which can be identified optimally via
variational iteration method. The subscripts n denote the nth approximation,
Uy, is considered as a restricted variation. i.e., du,, = 0; (3) is called as a correct
functional. We define the solution u (z) by the seriesu (z) = >, u; (x), and
the nonlinear term N(u) = 3> Ay (uo, u1,...,u;), where A, are the so-
called Adomian’s polynomials and can be generated for all type of nonlinearities
according to the algorithm developed, in [34, 35] which yields the following

A — (;11_,) (%) F (W) o-

Hence, we obtain the following iterative scheme for finding the approximate
solution

Uny1 (%) = up (x) + /: Y (Lun (s) + Z Ap—g (s)> ds, (7)
n=0

which is the variatioanal decomposition method (VDM) and is formulated by
the coupling of variational iteration and the decomposition methods.

5. Numerical applications

In this section, we apply the variational decomposition method (VDM) for
solving the sixth-order boundary value problems. We write the correct func-
tional for the sixth-order boundary value problem and carefully select the initial
value because the approximants are heavily dependent on the initial value. The
Adomian’s polynomials are introduced in the correct functional for the nonlinear
terms. The results are very encouraging indicating the reliability and efficiency
of the proposed method. For the sake of comparison, we take the same examples
as discussed in [20, 27, 28, 34].

Example 5.1 Consider the following nonlinear boundary value problem of sixth-
order of the type

Yy (z) =e P (z), O<z <1
with boundary conditions
y(0)=y"(0) =y (0) =1, y(1)=y" (1) =y (1) =e

The exact solution for this problem is y (z) = e®.
The correct functional for the boundary value problem is given as

* d%yn 2
e (@) =1 @)+ [ 26 (G2 e ) as.
0 x
Making the correct functional stationary, the Lagrange multiplier can be identi-

fied as A = % (s — a:)5 [14-19, 36], we get the following iterative formula
d%yn

Ynt1 (2) = yn (7) + /0“” % (s —z)° < T e yn? (s)> ds.
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which implies that

1 1
Ynt1 () = 1+Am+5w + Ba: +4:Jc + C.’L’

1 Yy, o
+/O 5(5—3&) (dmﬁ —e %y, (s))ds.

where A =y (0), B=1y"(0), C =y (0). Applying the variational decom-
position method, we have

1 1
Ynt1 (2) = 1—|—A:c+§x + Bx +E:v + Cm

+/Oz%(3—$) (d - _SZA)

where A, are Adomian’s polynomials for nonlinear operator F (y) = 42 (z) and
can be generated for all type ofnonlinearities according to the algorithm devel-
oped in [34, 35] which yields the following

2
A = (@), Ai=2y(2)y(2), A=y (v)+ Z—I,F" (%o) ,
Az = 2yo (2) y2 (2) + 7 (2) -
Consequently, we obtain the following approximants
Yo (ﬂf) - 1’
1 1 1 1\ 5. _,
nE)=1+A+z-1+ 3|B-l—3' 504—5—! z°+e 7,
=1+(A+1 1 1p Lor )b qes
ya(z)=1+(A+1)2z -1+ 3 -1—3' S O T )o e

1 1 1
— _Ar 7 A - 8
Fomgp T < 10080 20160) v

1 1 1,
+ (60480A + 400" ~ 60480) .

1 1 1 0
* <_ 453600~ 1536000 T 259200) v

1 1 1 1 "
+ (3991680A " To95820° T To95sa00C 1330560) ‘

1 1 1 1
_ o _ C 12.
+ < 39916800A 1197504OB 39916800 + 239500800) *

The series solution is given as

1 1 1 1 1
- 1 A Z .2 _B3 =4 _05 i 6
y(x) + x+233 +6 :v+24x +120 :1:+720
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1 1 1
A — 4 7 - - 8
2520 5040) v ( 100807 T 13440) *

1 1 1\
60180" " 181440 ~ 51840> !

(
(

+< L4 ! B+ ! )xlo
(

4536007 453600 241920

1 1 31
A+ L B+ C )a:n

3991680 1995840 19958400 39916800

1 1 1 1 12
+ < 399168007 119750400 39916800 7603200) v

Imposing the boundary conditions at z = 1 leads to the following system
39929261 9979423 332641 A 11731097

G [ Z

S9BRGF00 PORA00 SO 5| | o 5573
5880 PO R c o 825"
10080 5040 10080 40320

The solution of above system is given as

A =1.001252684, B = 0.988483055, C' = 1.085993892.
The series solution is given as
y(z) = 1+ 1.0012526840x 4+ 0.50022 + 0.164747175902> + 0.0416666667x*
10.0001989097x° + 0.00138888882° -+ 0.00019890972" -+ .000001z*
+0.00002712962° — 0.00000025292'° + 0.0000000239z'*
—0.0000000033z'% + 0 (2'?),
which is in full agreement with [27, 28, 34].

Table 5.1 (Error estimates)

*Error

z | Exact Solution VDM HPM ADM
0.0 1.000000000 0.000000 0.000000 0.000000
0.1 1.1056170918 | -1.233E -4 | -1.233E -4 | -1.233E -4
0.2 1.221402758 -2.354E - 4 | -2.354FE -4 | -2.354E - 4
0.3 1.349858808 -3.25TE -4 | -3.257TE- 4 | -3.257TE- 4
0.4 1.491824698 -3.855K -4 | -3.855E -4 | -3.855E -4
0.5 1.648721271 -4.086F - 4 | -4.086E - 4 | -4.086E - 4
0.6 1.822118800 -3.919E -4 | -3.919E-4 | -3.919E- 4
0.7 2.013752707 -3.361E-4 | -3.361E-4 | -3.361E-4
0.8 2.225540928 -2459E -4 | -2.459E -4 | -2.459E - 4
0.9 2.459603111 -1.299E -4 | -1.299E -4 | -1.299E -4
1.0 2.718281828 2.000E -9 | 2.000E -9 2.000E - 9

*Error = Exact solution — Series solution
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Table 5.1 exhibits the errors obtained by using the variational decomposition
method (VDM), the homotopy perturbation method (HPM) and the Adomian’s
decomposition method {ADM). It is obvious that evaluation of more components
of y(x) will reasonably improve the accuracy of series solution.

Example 5.2. Consider the following nonlinear boundary value problem of
sixth-order

y ) (z) = ey (z), O<z<1
with boundary conditions

y(0) = 1, YO =-1, 0 =1 y1)=e', ¥y ()=,
y(iv) (1)= et

The exact solution for this problem is  y(z) =e™*.

s @) = o)+ [ 20 (G- 0w 0)) ds

The correct functional for this boundary value problem is given as A = %—, (s — 1:)5
Making the correct functional stationary, the Lagrange multiplier can be iden-
tified as [14-19, 36}, we get the following iterative formula

* 1 5 d6’yn §~—2
Yni1 (2) = yn (7) + A 51 (s —x) . ey (8) ) ds,

where A = ¢/”(0), B = y")(0), C = y)(0). Applying the variational
iteration decomposition method, we obtain

1, 1, 45 1 1 . 5
Yntr1(2) = 1—2+ —Tmz + -—Am"’ + *B:c‘* + ~C:z:°

of e (“’”— §;A>

where A, are Adomian’s polynomials for nonlinear operator F (y) = y* (x)and
can be generated for all type of nonlinearities according to the algorithm devel-
oped in [34, 35] which yields the following

,
Ao = yo(x), Ai=2y @)y (z), Az =wF (y)+ %F” (o) ,
Az = 2yo(z)ye (2) + 9% (2)

Consequently, we obtain the following approximants yg (x) = 1,

1 1 1 _
y1($)21—2$‘1+< A—E)’T).%‘s (4'3——>x4+(—570—5—')x5+e z7
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B 11N\ 5 (1 1\ 4 (1. 1\ ;4

1
—T 7
e T 90
1, 1 1 1
- ] Ax® A B 10
20160° | 181220°* * <453600 + Istaa00” T 907200> .

+ 1A+1B+1C+1 M
19958400 3991680 19958400 13391680

1 1 1 1
A B C 12,
+ (11975040 + 15966720 + 39916800 + 239500800) *
The series solution is given as
1 1 1
—1— T2 —A 3 ~— B 4
y(z) x+2x +6 33—1—24 x

1 1 1 1
[l T ST B Y (.
T120%% T 720" T 5020° T~ 10320°

1 1 1 1
A 9 10
* <181440 + 362880> v (1453600A+ tsiaa0” * 725760) v

+1A+1B+1C+1x11
1995840 3991680 19958400 3628800

1 1 1 1 , 3
A 12
+ (11975040 59607207 3916800 22809600) 27 4o()

Imposing the boundary conditions at z = 1,leads to the following system

1425671 1108823 1‘10881 A e~ — 8891159
51990 20 AN Bl | e1 . ESEEY
I R PVt o 1) C o1 SRR

1512 362880 113400 3628800

The solution of this algebraic system gives

A = —0.99816409, B = 0.98167470, C = —0.93907310.

The series solution is given as

y(x) = 1—2z+0.5002% —0.1663606817x> 4 0.04090311252*
—0.007825609z° + 0.000138888892°
—0.000198412z7 — .0000248012° — 2.74561337 x 10~ %2°
—0.00000015572% — 0.00000002562'* — 0.0000000015z"% + o ('),
which is in full agreement with [27, 28, 34].
Table 5.2 exhibits the errors obtained by using the variational decomposition
method (VDM), the homotopy perturbation method (HPM) and the Adomian’s

decomposition method (ADM). It is obvious that evaluation of more components
of y(x) will reasonably improve the accuracy of series solution.
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*Error

z | Exact Solution VDM HPM ADM

0.0 1.000000000 0.000000 0.000000 0.060000

0.1 | 0.9048374180 | -2.347E-7 | -2347TE-7 | -2.347TE- 7
0.2 | 0.8187307531 -1.330E-6 | -1.389E-6 | -1.389E -6
0.3 ] 0.7408182207 | -3.307E-6 | -3.30TE-6 | -3.307E-6
0.4 1 0.6703200460 | -5.203E-6 | -5.203E-6 | -5.203E -6
0.5 ] 0.6065306597 | -6.198E -6 | -6.198E-6 | -6.198K -6
0.6 | 0.5488116361 -5.780E -6 | -5.780E-6 | -5.780E -6
0.7 | 0.4965853038 | -4.082E-6 | -4.082E-6 | -4.082E-6
0.8 1 0.4493283641 | -1.903E-6 | -1.903E-6 | -1.903E-6
0.9 | 0.4065696597 | -3.570E -7 | -3.570E-7 | -3.570E- 7
1.0 1 0.3678794412 | -5.000E - 10 | -5.000E - 10 { -5.000E - 10

*Error=Exact solution — Series solution

Example 5.3. Consider the following special sixth-order boundary value
problem involving a parameter ¢

u® (2) = 1+ )u® (2) — cu® (2) + e
with boundary conditions

w0 = L W O)=1, u(0)=0u(l)=+snh(])

1
u' (1) = 3 +cosh (1), u”(1)=1+sinh(1).
The exact solution of the problem isu (z) =1 + L2® + sinh(z).
The correct functional for this boundary value problem is given as
dSu,,

i ) = )+ [ A(0) (G

Making the correct functional stationary, the Lagrange multiplier can be identi-
fied as A = 4 (s — )°[14-19, 36], we get the following iterative formula

- ((1 + o) iun™ (s) = cun D (s) + ca)) ds.

du, _
dxb

Unt1 (T) = un () + /1 % (s —2)° ( ((1 +o)un ™ (s) — cun® (s) + cs)) ds

Applying the variational decomposition method, we obtain

1 1 1
Unit () =1+az+ iAxg + EBQU4 + aﬂxs
+ 1 (s —x)° dGU? ~ 1 (1+e¢) E"" ™ ()~ ¢ EOO un? (s)+es | | ds,
n B dx® — ) —~

where A = ¢ (0), B = 4y (0), D = 4 (0). Proceeding as before, the
series solution is given as
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1 1
u(z) = 1+:L+ Aa: —|— Bac +5‘D;1: +6'B:c +6'ch +ﬁcx
1 1 2,11
—|—7'DCL‘ — —Acx + = Dcx — chx + @Cﬂ: — ﬁc x
Table 5.3
c=1 c=10 c =100 ¢ = 1000 ¢ = 100000
A | 2.0000060289 1.9905263769 1.8454775798 | -6.852614584 | 1099168.307
B | -0.0000558706 | 0.09564140157 | 1.0137308481 | -8.390834496 | -1018.591684
C | 1.00017512540 | 0.60597366252 | -5.6392050771 | -71.57411568 | 1106809.16
Table 5.4
c=1
z | Exact Solution | *E(DTM) | *E(HPM) | *E(ADM) | *E(VDM)
0.0 1.000000000 1.00000 0.0000 0.0000 0.0000
0.1 1.1003334166 -4.5 E-6 -7.8E-10 -7.8E-10 -7.8E-10
0.2 1.2026693358 -2.5 E-5 -4.7TE-9 -4.7E-9 -4.7E-9
0.3 1.3060202934 -5.9 E-5 -1.7E-8 -1.7E-8 -1.7E-8
0.4 | 1.4214189924 -9.1 E-5 -1.9E-8 ~-1.9E-8 -1.9E-8
0.5 1.5419286388 -1.0 E-4 -2.4E-8 -2.4E-8 -2.4E-8
0.6 | 1.6726535821 -9.6 E-5 -2.3E-8 -2.3E-8 -2.3E-8
0.7 1.8157503685 -6.6 E-5 -1.7E-8 -1.7E-8 -1.7E-8
0.8 | 1.9734383155 -3.0 E-5 -8.6E-8 -8.6E-8 ~-8.6E-8
0.9 2.1480167257 -5.5 E-6 -1.7E-9 -1.7E-9 -1.7E-9
1.0 | 2.3418678603 0.0000 0.0000 0.0000 0.0000
*E=Exact solution—series solution
Table 5.5
c=10
z | Exact Solution | *E(DTM) | *E(HPM) | *E(ADM) | *E(VDM)
0.0 1.000000000 1.00000 0.0000 0.0000 0.0000
0.1 | 1.1003334166 -2.9 E-5 1.2 E-6 1.2 E-6 1.2 E-6
0.2 | 1.2026693358 -1.6 E-4 7.2 E-6 7.2 E-6 7.2 E-6
0.3 | 1.3060202934 -3.6 E-4 1.7 E-5 1.7 E-5 1.7 E-5
0.4 1 1.4214189924 -5.3 E-4 2.7 E-5 2.7 E-5 2.7 E-b
0.5 | 1.5419286388 -6.0 E-4 3.4 E-5 3.4 E-5 3.4 E-5
0.6 | 1.6726535821 -5.3 E4 3.2 E-b 3.2 E-5 3.2 E-5
0.7 | 1.8157503685 -3.5 E-4 2.3 E-5 2.3 E-5 2.3 E-5
0.8 | 1.9734383155 -1.5 E-4 1.1 E-5 1.1 E-5 1.1 E-5
0.9 | 2.1480167257 -2.7 E-5 2.2 E-6 2.2 E-6 2.2 E-6
1.0 | 2.3418678603 0.0000 0.0000 0.0000 0.0000
*E= Exact Solution - Series Solution

which is exactly the same as obtained in [20, 27] by using Adomian’s decompo-
sition method and homotopy perturbation method.
Imposing the boundary conditions at x =1, we have

Am2+g(c), BRO+h(), Dm1tp(d),
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where the functions g(c), h(c) and p(c) grow rapidly with c. In reality, they
should go to zeros as the number of terms in the series goes to infinity. Table 3.3
shows the vales of A, B and D, for different values of the parameter c. It is easy to
notice that the approximate solution obtained by the variational decomposition
method is in good agreement with the exact solution for the small values of the
parameter ¢ and continuously depends on the parameter c.

Table 5.3 exhibits the values of the constants A, B and D for different values
of c.

Table 5.6
c= 100
z | Exact Solution | *E(DTM) | *E(HPM) | *E(ADM) | *E(VDM)
0.0 1.000000000 1.00000 0.0000 0.0000 0.0000
0.1 1.1003334166 4.7 E-5 2.1E-5 2.1E-5 2.1E-5
0.2 | 1.2026693358 3.2E-4 1.4E-4 1.4E-4 1.4E-4
0.3 | 1.3060202934 8.7 E-4 4.1E-4 4.1E-4 4.1E-4
0.4 | 1.4214189924 1.5 E-3 7.5E-4 7.5E-4 7.5E-4
0.5 | 1.5419286388 2.1E-3 1.0E-3 1.0E-3 1.0E-3
0.6 | 1.6726535821 22E4 1.1E-3 1.1E-3 1.1E-3
0.7 | 1.8157503685 1.7 E-3 9.2E-3 9.2E-3 9.2E-3
0.8 | 1.9734383155 9.1 E4 4.9E-3 4.9E-3 4.9E-3
0.9 [ 2.1480167257 1.9 E-4 1.0E-4 1.0E-4 1.0E-4
1.0 | 2.3418678603 0.0000 0.0000 0.0000 0.0000

*E= Exact solution — Series solution

Table 5.7
c = 1000
z | Exact Solution | *E(DTM) | *E(HPM) | *E(ADM) | *E(VDM)
0.0 1.000000000 1.00000 0.0000 0.0000 0.0000

0.1 | 1.1003334166 5.9 E-5 1.4 E-3 1.4 E-3 1.4 E-3
0.2 | 1.2026693358 4.0 E4 1.0 E-2 1.0 E-2 1.0 E-2
0.3 | 1.3060202934 1.1 E-3 3.2 E-2 3.2 E-2 3.2E-2
0.4 | 1.4214189924 1.9 E-3 6.3 E-2 6.3 E-2 6.3 E-2
0.5 | 1.5419286388 2.6 E-3 9.3 E-2 9.3 E-2 9.3 E-2
0.6 | 1.6726535821 2.8 E-3 1.0 E-1 1.0 E-1 1.0 E-1
0.7 | 1.8157503685 2.2 E-3 8.6 E-2 8.6 E-2 8.6 E-2
0.8 | 1.9734383155 1.1 E-3 4.7 E-2 4.7 E-2 4.7 E-2
0.9 | 2.1480167257 2.5 E-4 1.0 E-2 1.0 E-2 1.0 E-2
1.0 | 2.3418678603 0.0000 0.0000 0.0000 0.0000

*E= Exact Solution — Series Solution

Table 5.4 — 5.8 exhibit the numerical results for small and large values of
c. The tables show that solution obtained using ADM, HPM and VDM is
in good agreement with the exact solution for small values of ¢ only, whereas
the approximate solution obtained using DTM are in good agreement with the
exact solution for all values of the parameter c. Consequently, one can say that
the variational decomposition method (VDM) is not reliable for solving such
problems.
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Example 5.4 Consider the following linear boundary value problem of sixth-
order
Y (x) = 66" +y(z), 0<z<1
with boundary conditions

y(0) = 1,9 (0) = 1,5 (0) = =3, y(1) =0,¢" (1) = —2e,5™ (1) = ~de.

Table 5.8
¢ = 10000
z | Exact Solution | *E(DTM) | *E(HPM) | *E(ADM) | *E(VDM)
0.0 1.000000000 1.00000 0.0000 0.0000 0.0000

0.1 | 1.1003334166 6.0 E-5 -1.8E4+2 | -1.8E+2 | -1.8 E+2
0.2 | 1.2026693358 4.1 E-4 -1.3E43 | -1.3E+3 | -1.3E+3
0.3 | 1.3060202934 1.1 E-3 -42E+43 | 42E+3 | -42E+3
0.4 | 1.4214189924 2.0 E-3 -84E+4+3 | -84E+3 | -84E+3
0.5 | 1.5419286388 2.7 E-3 -1.2E44 | -1.2E4+4 | -1.2E44
0.6 | 1.6726535821 29 E-3 -14E+4 | -14E44 | -14E+4
0.7 | 1.8157503685 2.3E-3 -1.1E4+4 | -1.1 E44 | -1.1 E4+4
0.8 | 1.9734383155 1.2 E-3 6.5 E+4 6.5 E+4 6.5 E4+4
0.9 | 2.1480167257 25 E4 -14E+3 | -1.4E43 | -1.4E+3
1.0 | 2.3418678603 0.0000 0.0000 0.0000 0.0000

*E= Exact solution — Series solution

The exact solution of the problem is y () = (1 — x) €®. The correct functional
for this boundary value problem is given as

T 6
s @) =i 0)+ [ 206 (G2~ (94 6 ) as.

Making the correct functional stationary, the Lagrange multiplier can be identi-
fied as A = & (s — 2)°[14-19, 36, we get the following iterative formula

71 d% .
Yni1 (T) = yn (2) +/ = (s — :1:)5 < dyg — (yn (s) + 665)> ds.
o O T
Applying the variational decomposition method, we have

1 1 3 1
yn+1 (3}) = 1 + AII} — E.’E2 + 53333 — 24—!1'4 -+ 501‘5

+/OI % (s —z)° (ddgg - (Zoyn (s) +6€5>> ds.

where A = ' (0), B = y”(0), C = y() (0). Consequently, we obtain the
following approximants yo (x) = 1

?

) 1 1
yl(m):7+(A+6)x+§m2+ <§TB+1> m3+~é~'x4+ (—C—) z° — 6e”,
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B 1, (1 s 3., (1 2\
y2 () = 13+(A+12)x+gsc +(§B+2>x +8x + 5!C+20 x

1 6 1 1 7 8
— 212 (A — —
Tip” Tt (5040 + 840)””  3064”

1 1
B 9
* (362880 + 60840) v

1 1
10 11
C
+1209600m + (6652800 + 39916800 ) v

The series solution is given as

B 1, 1. 3., 1. . 1

1 1 1
= A 7T_ - .8
+ (5040 840) T 560"

1 1 1
B — 9 10
+ (362880 60840) * T 103200"

6

1 1 "
+ (‘ 6652800 399168000) v

1 1
I T - A 13 0 14
39916800 +( 518918400 | 6227020800 )x +0 (")

Imposing the boundary conditions at x = 1 leads to the following system

889750903 60481 332641 A 189552271

BEAEHNC0  3GB5R0  SRUAR0O Bl _ ;%8%%%59
39916800 500 363430 p o oG3aRgo
362880 120 5040 7560

The solution of the above system gives
A =0.0041622709, B = —2.041623366, C = —3.500425047

The series solution is given as

y(z) =1+ 0.0041622709z — 0.500z> — 0.3402705611z° — .125¢*
—0.0291702095¢° — 0.0083333333z° — 0.00118965032"
—.00017358z° — 0.221605582 x 10~ *z°
—0.0000024800z° — 0.2380056805 x 10 °z"* ~ 0.00000000252"> + o (%) ,

which is in full agreement with [27, 28, 34].

Table 5.9 exhibits the errors obtained by using the variational decomposition
method (VDM), the homotopy perturbation method (HPM) and the Adomian’s
decomposition method (ADM). It is obvious that evaluation of more components
of y(x) will reasonably improve the accuracy of series solution.
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Table 5.9 (Error estimates)

*Errors
x | Exact Solution VDM HPM ADM
0.0 1.000000000 0.000000 0.000000 0.000000
0.1 0.99465383 -0.00040933 | -0.00040933 | -0.00040933
0.2 0.97712221 -0.00077820 | -0.00077820 | -0.00077820
0.3 0.94490117 -0.00107048 | -0.00107048 | -0.00107048
0.4 0.89509482 -0.00125787 | -0.00125787 | -0.00125787
0.5 0.82436064 -0.00132238 | -0.00132238 | -0.00132238
0.6 0.72884752 -0.00125787 | -0.00125787 | -0.00125787
0.7 0.60412581 -0.00107048 | -0.00107048 | -0.00107048
0.8 0.44510819 -0.00077820 | -0.00077820 | -0.00077820
0.9 0.24596031 -0.00040933 | -0.00040933 | -0.00040933
1.0 0.000000 0.000000 0.000000 0.000000

*Error=Exact solution — Series solution

Conclusion

In this paper, we have used the variational decomposition method (VDM) by
combining the traditional variational iteration method and the decomposition
method for finding the solution of boundary value problems for sixth-order. The
method is applied in a direct way without using linearization, perturbation or
restrictive assumptions. It may be concluded that VDM is very powerful and
efficient in finding the analytical solutions for a wide class of boundary value
problems. The method gives more realistic series solutions that converge very
rapidly in physical problems. It is worth mentioning that the method is capable
of reducing the volume of the computational work as compare to the classical
methods while still maintaining the high accuracy of the numerical result, the
size reduction amounts to the improvement of performance of approach. It is

worth mentioning that we also considered an example where the proposed VDM
is not reliable.
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