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ON THE CONVERGENCE OF PARALLEL GAOR METHOD
FOR BLOCK DIAGONALLY DOMINANT MATRICES

QINGBING LIU

ABSTRACT. In [2] A.Hadjidimos proposed the generalized accelerated over-
relaxation (GAOR) methods which generalize the basic iterative method
for the solution of linear systems. In this paper we consider the convergence
of the two parallel accelerated generalized AOR iterative methods and ob-
tain some convergence theorems for the case when the coefficient matrix
A is a block diagonally dominant matrix or a generalized block diagonally
dominant matrix.
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1. Introduction
For solving the large nonsingular linear systems
Az = b, 1)

where A € R™ " is a nonsingular matrix with nonvanishing diagonal entries
and b € R". O’Leary and White [1,12] proposed the idea of matrix parallel
multisplitting which provides a effective way for projecting parallel iterative
methods. Recently, the parallel iterative methods of some families of matrices
attracted researchers’ attention and several significant results were proposed.
The multisplitting method was further studied by Neumann and Plemmons [3],
Frommer and Mayer {4,5], Wang [6], J.H.Yun et al.[13].

A.Hadjidimos [2,11] researched the generalized accelerated overrelaxation (G

AOR) methods which generalize the basic iterative method for the solution of
linear systems. Let

A=Dy—Dy;—D;—Cp — Cy, (2)
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where D;(i = 1,2, 3) are diagonal matrices and Cp,Cy are strictly lower and
upper triangular matrices, D4 = Dy — Dy — D3 = diag{A). For the parame-
ters (v,w),w # 0, if Dy — Dy is nonsingular, then the generalized accelerated
overrelaxation (GAOR) method of linear systems (1) is as follows:

2® ) = L, a® 4 w(Dy — (D2 +CL)) b, k=0,1,---, (3)
where the generalized accelerated overrelaxation (GAOR) matrix

Lyw = (D1 — (D2 +C1)) ™ (1 = w)D1 + (w — 7)(D2 + Cp) + w(Ds + Cv)).
4)
When the parameters (v, w) are transformed to (w,w), (1, 1), (0,w) and (0, 1),
respectively. Then the generalized accelerated overrelaxation (GAOR) method
reduces to the generalized SOR(GSOR), the generalized Gauss — Seidel (GG S),
the generalized JOR(GJOR) method and the generalized Jacobi (GJ) method.
Song [8] gave a example to show the merits of GAOR method. By choosing
the appropriate matrices D;(¢ = 1,2, 3), which can make p(L, ) be small as
soon as possible. For example

Let Dy = diag(8,7,8), D2 = 0,w = 2, it shows that p(L,, ,) = 0.

In this paper, our main idea is to apply appropriate matrices D;(i = 1,2, 3)
to the parallel generalized accelerated overrelaxation methods for the solution of
linear systems. Then, we discuss the convergence of the two parallel multisplit-
ting generalized AOR iterative methods and obtain some convergence theorems
for the case when the coefficient matrix A is a block diagonally dominant matrix
or a generalized block diagonally dominant matrix.

2. Multisplitting and algorithms

Consider an n x n real matrix A, which is partitioned as the following form:

A A oo Agg
A1 Apz -+ Aps
A - . . . . 9
Asl A52 e Ass
where A;; is an n; X n; nonsingular principal submatrix of 4, i = 1,2,---, s,
S
>~ n; = n. For a positive integer n, n;(n; < n,i = 1,2,---,8,s < n) satisfy
i=1
S
> i =n, we define V,(n1,na, - ,ns) = {z € R"|z = (zf 2L - 2T 2y €

i=1
Rniai: 1327'” 75}7
Ln(’fll,ﬂ&,' . ,TLS) = {A S L(Rn)|A = (Aij),Aij S L(RnJ,Rni),i,j =12, ,8}.
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Specially, L(R™, R™) is further abbreviated to L(R™), where L(R" R™) de-
notes the set of all n; x n; real matrix.

Definition 1. For k ¢ {1,2,---,7}, if block matrices My, Ny, Ey € Ly (n1, na,
-, ) satisfy
()A = My, — Ny, det(My) £0,k=1,2,--- 7,

(i) Ey = diag(E® - B k=12, r, S IE®| =1,i=1,2,--- s,
k=1

(13
(i) S Ep = I
k=1
The triad (Mg, Ni, Ey), k= 1,2,- -+, 7, is called a mulsplitting of a block matrix
A, where ||-|| denotes the compatible matrix norm such that ||I|| = 1(I € L(R™)
is an identity matrix).

Given that 7(1 <'s), Jy(k =1,2,-- -, ) are excisive sets of the set {1,2,---,s}.
Namely, Ji € {1,2,---,s},k = 1,2,---,7, |J Jp = {1,2,---,s}. For a block
k=1
matrix A € L,(ny,ne, -+ ,ns), we define

D= diag(AllaAZ% T »Ass) S Ln(nlan2a te 7”5)7detD ?é 0,

B ~ (k) e TeiS
L. = L(k) el L(k): Lij ) Zf 1,7 € Jg,t >,
k ( 1]) "(nl,ng, ans)v ij O, otherwise,
O
7 (k) (k) Uy’ if i #7,
Uy = (U) € Lp(nq,na, - ,mg), U = ig v TS
= ) € Lm0 = { Vg 070
i,j:1,2,"',S;k:1,2,"‘,7',
where D, Ly, U € Lp(ni,ng,---,ns)(k = 1,2,---,7) are a block diagonal,
block strictly lower triangular and zero diagonal matrices, A = D — Ly —
Us(k = 1,2,--+,7), By = diag(EY, B, E{) € Lo(ny,na, -+ ns)(k =
1,2,-.. 77')

(k) .

(k) E;; i€ Jy .

E = i ) =1,2,- -, 85k=1,2,---, T,

! { 0, ie{l,2,- s\ 007 T
1;1”}31(?)“:1’ i=1,2,- s

By the above definitions, we now describe the two relaxed parallel accelerated
generalized AOR methods.

Algorithm I.  Choose 29 € V,,(ny,ny - - - ,ng), for p=0,1,2,---, until con-
vergence, perform

k k
D = LG aor(A)n? + W s aom b= 1,2, 7, (5)
2Pt ZEka:p’k, (6)
k=1

where
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k -1
LSVI)BGAOR(A) = (D1 —7(Dz + L)) (1—w)Dy
+Hw —Y)(Ds2 + L) + w(D3 + Uy)),
k “1
b BcaoR = w(Dy —(Dy + Ly)) b,
with w > 0.

If we define the matrix and the vector:

Lysaaor(A) = Z ExLy g a0r(A);
k=1

-
k
bMBGAOR = ZEka\/I)BGAOR’
k=1
then Algorithm I can be equivalently written as

"t = Ly pgaor(A)x? + byecaor- (7)

It is obvious to see that Algorithm I is convergent if and only if p(Lyscaor(4))
< 1.

By introducing a appropriate positive relaxation parameter 3 to the Algo-
rithm I, we then get the following relaxed Algorithm II.

Algorithm II.  Choose (9 ¢ V,(ni,ny---,n,), for p = 0,1,2,---, until
convergence, perform

k k
Y = Lg\/I)BGAOR(A)xp + bS\/I)BGAOR’ k=1,2,---,7, (8)
P = Byt 4 (1= B)a? Q)
2P = Bk, (10)
k=1

where LS\I/;)BGAOR(A) and bg\’;)BGAOR are similarly defined as (5), 8 € (0, +00).

Similarly, we can write the iterative matrix of Algorithm II as

B Z EkLg\lf[)l'BGAOR(A) +(1-p) E Ey
k=1

k=1
= BLmpcaor(4) + (1 - P9I,

MBGAOR (A)

T
k
YvBcaor =B Z Ekbg\/[)BGAOR?
k=1

then Algorithm IT can be equivalently written as:
a"*! = Ly paaor(A)z? + Vypgaor- (11)

It is obvious to see that Algorithm IT is convergent if and only if p(L, gaaor{4))
<1.
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3. Preliminaries

For a matrix G = (g;5) € L(R™), G € L(R™) is called an M— matrix
it gi; <006 # 7), 4,5 = 1,2,---,m, G™! exists and G~' > 0. Let Dg =
diag(gi1, 922, » gmm), Ba = Dg — G, G is an M — matrix if and only if Dg >
0 is nonsingular and p(Jg) = p(D&lBg) < 1, where Jg denotes the matrix
DélBg. We define the set

Lnyl(nl,ng, s ,7?,3) = {M = (Mij) S Ln(nl,ng, cen ,n3)|Mn‘ S L(Rn‘) is

nonsingular, i =1,2,--- s},
Li’l(nl, g, .- ,ns) = {Md = d’L‘O/g(Mlh MQQ, ce 7Mss)|Mii & L(Rn”) is
nonsingular, ¢ =1,2,---, s}.

Definition 2 ([7]). Let M € Ly (ni,na,-+-,ns), a (I) block comparison
matrix(M) = ((M);;) € L(R®*)and a (II) block comparison matrix ((M)) =
({((M))s;) € L(R®) are defined respectively as follows:

“1-1
M “ “ Z_J, ‘7‘ 1727"'a8)
ons =4 Wby 170
1 i=j,
MY, = - D i =1,2, s,
0= { _ppiagy), i
where || - || denotes the compatible matrix norm such that ||I]| = 1.
For block matrices L € Ly(ni,ng, -+ ,ng) and M € Ly, 1(n1,na,- -, ng), we

define D(L) = diag(L11, Log, - - - ,Lss),B( )= D(L)-L,J(M) =D(M)"'B(M),
(M) = p(Jiary), pa(M) = p(I — {{(M))). Then from definition 2, it is easy to
verify that (I — J(M)) — ({1 — J(MY) = (M)}, pa(M) < 1 (M),

Definition 3 ([7]). Let M € L, ;(n1,n2,---,ns). A matrix M is said to be a
(I) block H— matrix (Hg)(P, @Q)-matrix) relative to nonsingular matrices P and
Q if there exists two matrices P,Q € Lﬁyl(nl,ng, -++,ng) such that (PMQ) is
an M — matrix; A matrix M is said to be a (1I) block H— matrix (H](BH) (P, Q)-
matrix) relative to nonsingular matrices P and Q if ((PM@)) is an M — matrix.

Remark. From definition 3, we know an H (I)(P Q)— matrix must be an
H (“)(P @Q)— matrix, but not conversely.

Definition 4 ([9]). Let A = (a;;) € R"*". A = B — C is said to be a normal
splitting of a matrix A if B~1 > 0,C > 0; A = B—C issaid to be an M —splitting
of a matrix A if B is an M —matrix and C > 0.

Definition 5. Let M € L,(ny,ng,--- ,ns). [M] = (||My]]) € L(R?) is said to
be a block absolute value matrix of a block matrix M. Similarly, [z] € R is said
to be a block value vector of a block vector x € V,,(ny, na, - -+, ng).

Lemma 1 ({9]). Let A, B € R™*", and |A| < B. Then p(A) < p(B).
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Lemma 2 ([10]). Let L,M € Ly(ny,n2, -+ ,ns), T,y € Vup(ni,na, -+ ,ns),
v & R. Then
(D |[L] - [M]| < [L+ M] < [L] + [M] (|[z] = [y]] < [z +y] < [2]+ [4])-
(2) [LM] < [L][M] ([Mz] < [M][=]).
(3) [yM] < [ [M] ([yz] < |y][2]).-
(4) p(M) < p(IM]) < p([M]) (wh

Lemma 3 ([10]). Let M € Ly, 1(n1,n2, - ,ns) be an Hg)(P, Q)-matriz. Then
(1) M is nonsingular.
() [(PMQ)™] < (PMQ)~!
(3) m (PMQ) < 1.

ere || || s || - lloo or [| - [[1)-

Lemma 4 ([10]). Let M € Ly, ;(n1,nz,-- ,ns) be an H](;I)(P, Q)-matriz. Then
(1) M is nonsingular.
(2) [(PMQ)™Y] < ((PMQ)) ' [D(PMQ)'].
(3) m2(PMQ) < 1.

Finally, we use

I _ _
O (M) = {F = (Fyj) € Lo 1(n1,na,- - ,ns)|1F 1 = 155 |1 Ell = (10511,
iy.j — 1)23”' 7S}a
and
II _ _

Q5 (M) = {F = (Fyy) € Lnt(m1,m2, -, mo)|[| By Figl) = || M7 Mg,

iaj: 1727"' 75}
to denote respectively the set of (I) and (II) matrices such that the absolute

values of whose elements are equal to absolute values of corresponding elements
of the matrix M. In the next discussion, || - || denotes generally || - |loc oF || - ||1-

4. Convergence of the algorithms

Theorem 1. Let M € L, (ni,ng, - - ,ns) be an Hg)(P, Q)-matriz. A €
Qg)(PMQ), (Da, L, Uy, Ex), k = 1,2,--- |7, is a multisplitting of the block
matrix A. Suppose that for k=1,2,--- 7, we have
(A) = (Da) — [Li] — [Uk] = D(ay — Biay-

If v,w satisfy 0 < v < w,0 < w < maz{ws, 2/(1 + 1 (PMQ))}, where wi =
2/min|| Dy (e([Da] + [D3]) + [A])]la (o is 0o or 1). Then the sequence z(P) C
Va(ni,ng, -+ ,ns) generated by Algorithm I converges to the solution vector of
system (1) for any starting vector (© € Vi, (ny,na, -+, ns).

Proof. To verify that the sequence ) C V;,(ny,na,--- ,n,) generated by Algo-
rithm T converges to the solution vector of linear systems (1), it suffices to prove
p(Lymcaor(A)) < 1, where p(Lypaaor(A)) denotes the spectral of matrix

LarBceaor(A).
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Since A € Q) (PMQ), then (A) = (PMQ). Because M € Ly, 1(n1,nz, - ,
ns) is an H](BI)(P, Q)-matrix, so A € Ly, 1(ny,n2,- -+ ,ng) is an Hg) (I, I)-matrix
and w1 = p(Jiay) = p(Jipmey) = m(PMQ). From Lemma 3, we have p; =
p(Jiay) = m(PMQ) < 1.

Let us first consider

LE\I/CI)BGAOR(A) = (D1—y(D2+Ly)) - (1=w)Dy+(w—) (D2 +Li)+w(Ds+Uy)).

It is clear that Dy — (D3 + Lg) is an Hg) (I, I-matrix. From Definition 5 and
Lemma 3, we have
(D1 = (D2 + L)) 1 < (D1 — (D2 + Li)) ™ = (ID] —([D2) + [Le]) 7Y, (12)

and

(L5640 () < (D1 —4(Da+ Li)) "1((1—w) D1+ (w—7) (D2 + L) +w(Ds 4+ Ui))]

< ((D1] = y([D2] + [La])) TH{[L — @ [D1] + (w — 1) ([D2] + [Li]) + w([Ds] + [Uk])}-
Let
My () = [D1] = ~([D2] + [L)),
Nig(w,7) = [1 = w|[D1] 4 (w = 7)([D2] + [Li]) + w([Ds] + [Uk)).
Thus, we have

[Lasoaor(A) <> ExMyi(y)Ny(w, ).
k=1
From lemma 1, we have

p(Lmpcaor(A)) < p((Lupcaor(A)]) < p(z Ey Mi(v)Ng(w,7)).
k=1

To prove that p(Lypgaor(A)) < 1, we consider
Ap(w, ) = Mi(y) = Ni(w,v) = [D1] = ([ D2] + [Lx]) —
{[1 —w|[D1] + (w — N(D2] + [Lx]) + w([ D3] + [Ur])}

= (U [ eh(1Pal -y Ba):

Since A € Qg)(PMQ), we know that p11 = p(Jiay) = 1 (PMQ) < 1 and

(D7 (2(1D2] + [Ds)) + [A]) = T+ [Dy(([D2] + [Ds]) + [Li] + [Uk]).-
It is easy to show that

min [|[DY(([D2] + [Ds]) + [Li] + [Uk]) [lo < 1.

a=00,1
Then we have

min_||
a=00,1

[Dy '1(2(IDs] + [Ds]) + [A]) ]l > 2.
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Since 0 < w < maz{wi,2/(14+p (PMQ))}, wehave 0 < w < 2 and 1—[1—w] > 0.

Thus, we have

1

([Da] - [Ba]) " 20,

1—-[1—w]

then Ag(w,v)~t > 0. It is easy to know that M (v) is an M-matrix, Ni(w,vy) >
0. Hence Mg(y) — Ni(w,v) is an M-splitting of Ag(w,v). According to the
lemma 2 of M.Neuman [3], we know that the block matrix

Ap(w,y) = My(7) = Ne(w,7)

where
My(v) 0 -+ 0
0 My) -~~~ 0
My(y) = . i ) : ,
0 0 M, (v)
I-Nl(w,'y) 0 0 [El E, --- E,
== 0 N2(w7/7) 0 El E2 E‘r
Ni(w,y) = : : ' : . )
0 0 o Ne(w,9) E, Ey --- E,

is also an M-matrix, M(7) — Nx(w,) is an M-splitting of Ax(w,7). From
lemma 1, we have

p(Mi(7) 'Ni(w,7)) < L

On the other hand, we can use the method of [8] to obtain

<Z EkMk lNk(w ’y

[ E E2 Mi(v)"'Ni(w,y) 0 ---0
0 My(y)"'Nao(w,y) O ---0
=p . . o
[ 0 M) Now,y) 0 -0
—M(’y 1N1(w7 0 ---0 E, By .-+ B,
Ma() 1N2w'y 0 -0 0 0 - 0
M, ()" 1N(w7) d o Lo o 0
Mi(v)" \Ni(w,M)E1  Mi(y) 'Ni(w,)E2 -+ Mi(7) 'Ni(w,7)Er
Ma(y)~ 1Nz(w NE M) No(w, B2 o Ma(y) T Na(w, 1) Er
=p : . :
M, () Nelw, B Me(0) T N (@, Ea o Mo(3) o () Er

=p (Mk(’Y) 1Nk<wa’7)) :
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Hence, we have

-
p(Larscaor(A)) < p(Y ) ExMy ()N (w, 7)) = p (My(7) " 'Ni(w, 7)) <1. O
k=1

Theorem 2. Let M € L, ;(ni,n9, - ,ns) be an Hg‘l)(P,Q)-matm‘x. A e
Q(BU)(PMQ), (Da, Ly, Uy, Ey), k = 1,2,--- 7, is a multisplitting of the block
matriz A. Suppose that for k =1,2,--- , 7, we have

(A) = (Da) — [Lx] = [Ux] = Diay — Biay.
If v,w satisfy 0 < v < w,0 < w < maz{w, 2/(1 + p(PMQ))}, where wi =
2/min|| Dy {a([Da2] + [D3]) + [A])|la (@ is 0o or 1). Then the sequence z(®) C
Va(ni,ng, -+ ,ng) generated by Algorithm I converges to the solution vector of
linear systems (1) for any starting vector =9 & Vi, (ni,ng, -+ ,n)-
Proof. Since A € le) (PMQ), then ((A)) = ((PMQ)). Because M € Ly j(n,
N2, ,Ng)isan H](gn)(P, @Q)-matrix,so A € Ly, ;(n1,na,--- ,ns)isan H](BH)(I, -
matrix and pa = p(Jyay)) = p(Jpmqyy) = p2(PMQ). From Lemma 4, we have

p2 = p(Jiay) = p2(PMQ) < 1. The proof of the residual part is same as that
given in Theorem 1, which completes the proof. ]

Theorem 3. Let M € Ly (ny,na, - ,ns) be an Hg)(P,Q)-matm'x. A €

Qg)(PMQ), (Da, L, U, E), k = 1,2,--- .7, is a multisplitting of the block
matriz A. Suppose that for k= 1,2,---,7, we have

(A) = (Da) — [Ly] = [Ux] = Diay — Biay.
If parameters v, B, w satisfy
0<y <w,0<w<maz{wy,2/(1+ 1 (PMQ)},
0<8<2/(1+7°(PMQ)),n*(PMQ) = max{|l - w| + wp (PMQ)}

wherewy = 2/min|| D7 ([ D2)+[D3])+[A]) la (v is 0o or 1). Then the sequence
P C Vo(ny,ng,---,ns) generated by Algorithm IT converges to the solution
vector of linear systems (1) for any starting vector ) € Vi (ny,ng, -+ ,ng).

Proof. In order to prove theorem 3, from the proof of theorem 2, we have
4 -1
LvBeaor(4)] < ﬁZEk[(Dl = y(D2 + Lk)) ][((1 —w)Dy
k=1
+Hw = (D2 + Le) + w(Ds + U))| + [1 - 8|1

53 Eu((Da] — (D) + [Lel)) {11 ][]
k=1

IA

Hw = ([D2] + [La]) + w([Ds] + [UkD} + [1 - B
Let
My () = [D1] —([D2] + [Lx]),
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Nig(w,7) = [1 = wl[D1] + (w = )([D2] + [Li]) + w([Ds] + [Uk]).-
Thus, we have

[Lvisaaor(A)] < 52 Ex My (7) Ny (w,7) +[1 = BT
k=1

<8 Bl ()(Mi(y) = Ax(w, ) + [1 = )1
k=1

T B w B
= BT A= {1-80) Y B, (DA (11— D] [Bes]).
k=1
Since M is an Hg)(P, Q)-matrix, A € Qg)(PMQ) and 1 < w < maz{wy,2/(1+
m(PMQ)), we have w1 = p(Jiay) = p(Jipmgy) = p1(PMQ) < 1, and there
exists € > 0, if let

Je=Jiay +eeel, e=(1,1,---,1) € R®. (13)
Then
pe =p(J:) <1, [1 —w]+wpe < 1. (14)

By properties of the spectral radius of nonnegative matrices, if ¢ is monotone
decreasing, then the strict inequality of (15) is invariant. Since 0 < 8 < 2/(1 +
7*(PMQ)), we know that if ¢ is sufficient small, then not only (15) holds, but
we have

1 —8]+8pa <1,pa=[1-w]+wp: <1. (15)

Obviously, J. is a positive matrix, by Perron-Frobenius theorem, there exists a
positive vector z. € R® such that J.x. = p.x.. Thus, we have

[Lyvpeaor(A]l < BI+[1—pII-F(1—[1-w]) ZEkMigl(’)’)[DA]
k=1

[I C1-[1-4f (IDay] ' [Beay] + EeeT)] )

Hence, we have

[Lseaor(@lze < (BI+[1 = plDze — B(1—[L -w]) Y ExM, ' (7)[Da]
k=1

[I“ T [w M, ()7 [B) +566T)J e

1 —w] (
Since M, '(v) > [Da]~!, we have
(Lvpaaor(@)]ze < (1= 6] + B ([1 - w] +wpe)) ze.

Observe that 0 < v < w,0 < w < maz{w,2/(1 + W (PMQ))},0 < 8 <
2/(1+n*(PMQ)), we have

[Lviscaor(A)lze < z..
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Hence, we have

p(Lhviscaor(A)) < p([Lhypaaor(4)]) < 1.
This is complete the proof. 0

Theorem 4. Let M € L, j(ni,na, -+ ,ns) be an Hgl)(P, Q)-matriz. A €

OG(PMQ), (Da, L, Up, Ex), k = 1,2,---,7, is a multisplitting of the block
matriz A. Suppose that for k=1,2,-.- .7, we have

(4) = (Da) — [Lx] = [U] = Diay — Bay.-
If parameters v, B,w satisfy
0 <y <w,0<w<maz{w,2/(1+ u(PMQ))},
0<8<2/1+n*(PMQ)),n*(PMQ) = max{|1 — w| + wpuz(PMQ)},

where wy = 2/min|| Dy (o[ Da]+[Ds])+[A]) o (a is 00 or1). Then the sequence
=P Va(ni,na, - -+ ,ns) generated by Algorithm II converges to the solution
vector of linear systems (1) for any starting vector x(©) € V,,(n1,na, -+, ns).

Proof. Since A € QgI)(PMQ), then ((A)) = ((PMQ)). Because M € Ly, 1(n1,

Ng, - ,Ng)isan H};I)(P7 Q)-matrix,so A € Ly, ;(n1,na, -+ ,n,) isan H](BH)(I, I)-

matrix and pa = p(J(ay) = p(Jpmgy) = p2(PMQ). From Lemma 4, we have
p2 = p(Jiay) = p2(PMQ) < 1. The proof of the residual part is same as that
given in Theorem 3, which completes the proof. O

Remark. If we let D, = D3 = 0, then Theorem in this paper is the special
condition of [9] for the case when A is a block H-matrix.
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