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SPANNING 3-FORESTS IN BRIDGES OF
A TIGHT SEMIRING IN AN LV-GRAPH

HwaN-OK JuNG

ABSTRACT. An infinite locally finite plane graph is an LV-graph if it is 3-connected
and VAP-free. In this paper, as a preparatory work for solving the problem con-
cerning the existence of a spanning 3-tree in an LV-graph, we investigate the
existence of a spanning 3-forest in a bridge of type 0,1 or 2 of a tight semiring in
an LV-graph satisfying certain conditions.
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1. Introduction

All graphs considered in this paper are undirected and have neither multiple
edges nor loops. We use standard terminology and notation as used in [2]. The
reader may overview infinite graph theory concerning the problems about the
existence of spanning subgraphs in [3] or [9].

Let G be a graph. If S C V(G), G|5] is the subgraph induced by S in G. The
degree and neighborhood of a vertex v of G are respectively denoted by dg(v) and
Na(v). A spanning subgraph H of G is a subgraph of G with V(H) = V(G). For
a positive integer k, a k-subgraph H of G is a subgraph of G with dy(v) < k for
all v € V(H). A spanning tree, spanning k-tree, spanning forest and spanning
k-forest are similarly defined.

Let H be a subgraph of G. We define a relation ~ on E(G)\ E(H) by the
condition that e; ~ ey if there exists a path P such that

(i) the first and last edges of P are e; and es, respectively, and
(ii) P and H are edge-disjoint.
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A subgraph of G — E(H) induced by an equivalence class under the relation ~
is called a bridge of H in G. If B is a bridge of H in G, then the elements of
V(H) N V(B) are called the vertices of attachment of B. In particular, if H
and H' are disjoint subgraphs of G and B is a bridge of H U H', we say that B
connects H with H' if both V(B)NV(H) # § and V(B) N V(H') # § hold.

Let G be a finite connected plane graph. A block of G is either a cut-edge which
will be called frivial, or a maximally 2-connected subgraph of G which is called
nontrivial. For a block @), we may denote 9Q the subgraph of G constituted
by the vertices and edges incident to the unbounded face of G. If a block @
contains at most one cut-vertex, we say that @ is an endblock of G. Thus, in
particular, if G is a nontrivial block (i.e., G is 2-connected), G is the outer
cycle of G. On the other hand, if G is a trivial block, then G = G. A plane
graph G is a circuit graph (following D. Barnette [1]), if there exists a cycle C in
a 3-connected plane graph such that G is isomorphic to the subgraph consisted
of the vertices and edges of C and in the interior of C; or equivalently for every
vertex cut S of G with |S| = 2, every component of G — S contains a vertex of
J0G. (See [8] for a more thorough exposition of the theory of circuit graphs.)

Let G be an infinite connected planar graph. A separating path in G is said
to be unbounded if each of the two endvertices of the path is incident to an
unbounded face. A finite set of unbounded separating paths P = {Py,..., Py}
in G will be called a semicycle if there exist connected subgraphs Gy, G1,...,G,
of G such that

[S].] G= U?ZOGZ‘, GoNG;=PF; forallie {1,... ,n}

and G, NG; =0 foralls,j e {1,...,n} with ¢ # j, and

[S2] Gy is finite, but G; (i = 1,...,n) are infinite.

In this case, the finite subgraph Gy of G is called the center of the semicycle
P, which will be denoted by C(P). A semicycle P is induced if all paths in P
are induced. Two semicycles P and P’ are disjoint if V(P)NV(P') = @; for
convenience, the set of vertices V(P) (respectively, the set of edges E(P)) of
P will be understood to be the union of all vertices (respectively, edges) of the
paths in P.

Let P and P’ be disjoint semicycles with P C C(P’) in a connected planar
graph G. A (P, P’)-semiring in G is a subgraph of G consisting of not only
the cycles in P and P’ but also all vertices and edges lying between P and P’.
Bridges of a (P, P’)-semiring R are defined by the bridges connecting P with
P in R. A bridge B is of type k (k = 0,1,2,...) if the number of vertices of
Bon P is k. A (P,P')-semiring R is said to be tight if it satisfies following
conditions:

[T1] P and P’ are induced.

[T2] For each infinite component H of G —C/(P), there exists exactly one path
P in P’ such that the endvertices of P are adjacent to the endvertices of
the foot of H.
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(T3] [V(B)NV(P")| <2 for all bridges B of R.
[T4] If B is a bridge of R with V(B) N V(P') = {z,2'}, z # 2/, then z2/ €
E(P).

An infinite locally finite plane graph is an LV-graph if it is 3-connected and
VAP-free (=vertex-accumulation-point free). It is not hard to verify that an LV-
graph can contain continuum many ends, and therefore it can have continuum
many unbounded faces. In such a point of view, we define a 3LV-graph to be an
LV-graph containing no unbounded faces, as introduced in [7].

In finite graph theory, many research papers have been published on the
problem of the existence of spanning subgraphs in a graph with lower degrees (see
[5], [6] or [12]) since the appearance of the theorem of Barnette [1], who showed
that every circuit graph contains a spanning 3-tree; but in case of infinite graph
theory the history is not so long. As to the existence of end-faithful spanning
trees or end-faithful spanning forests, since the first thesis was written in 1988 by
Sirait [11], there have been several theses published, for example, by Diestel [3]
or Polat, [10}, etc. On the other hand, the first paper on the research concerning
the existence of spanning subgraphs or spanning k-tree in a graph, particularly
in a planar graph, was written by Jung [7] in connection with the [2, 3]-factors.
In fact he showed that the theorem of Enomoto et al. [4] can be extended to
3LV-graphs; i.e., he showed the existence of |2, 3]-factors in such a graph under
certain conditions. However, it seems to be quite difficult to extend this theorem
to general LV-graphs which contains continuum many ends, and this is obviously
one of the critical problems in infinite graph theory that we should solve in the
future. As shown in [9], a key to the solution of this problem is the analysis
of the three types of the bridges (see [T3] above) of a tight semiring in such a
graph.

In this paper, as a preparatory work for solving this problem, we investigate
the existence of a spanning 3-forest in a bridge of type 0,1 or 2 of a tight semiring
in an LV-graph which satisfies certain conditions that we need.

2. Preliminaries

Let R be a tight (P, P’)-semiring in an LV-graph G and let B be a nontrivial
bridge of R. Further set {1, -, x, = T} be the set of the vertices of attachment
on P in the clockwise order. Then we may say that z; (and r T) is the first
(and the last, respectively) vertex of attachment of B on P. We set further
H:=B—-(PUP). If r =1, then B must be of type 2, and in this case H
contains at most 2 endblocks.

We now assume that » > 2. Since H is still connected, there is a path in B
connecting z; and 7, such that the intersection of the path and P is {z1,7}. We
choose such a path Pg with

V(PB) = {xlazly e 52875}7
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where 27 and 2z, denote the first and the last vertices adjacent to 1 and 7 in
the natural order, respectively. Now we may denote Ap the set of all blocks of
H containing at least one edge of Pg. Then we can easily see that the set Ap
is unique for a given bridge B.

On the other hand, if the z1,Z-path on P is denoted by Pf, we have a cycle
J := Pg U Pj. The blocks of H lying entirely in the interior or exterior of J are
said to be the inner blocks or outer blocks of H, respectively. The inner endblocks
and outer endblocks of H are analogously defined. By the 3-connectedness of G,
if B is of type 0 or 1, there exist no outer blocks, while there can be at most one
such block if B is of type 2.

Proposition 2.1. Let B be a bridge of a tight (P, P’)-semiring in an LV-
graph, and let further Q1,---,Q, be the inner endblocks of B = B — (PUP’)
with the articulations uy,---,us. Then there exist pairwise distinct vertices
z1, -,z € V(B)N(V(P)\ {Z}) such that z; is adjacent to a vertex of Q; —u;
(i=1,...,t).
Proof. Let V(B)NV(P) = {z},...,z,. =T}. We easily see that

(a) every inner endblock is adjacent to at least 2 vertices of P; and
(b) if 2} ,--- ,:v;ki, (ki > 2) denote the vertices of P adjacent to Q; (i =

1,--+,t) in the natural order, then

}:11<"'<1k1 T2 <o 2y, S K < <y,

for Q1 foerg for Q:

If we set
e et o
T1i=Ty,, Toi=To, -+, Tgi= Ty
then 21, ... , ¢ are pairwise disjoint, and further, since k; > 2foralli=1,... ¢,
we obtain T ¢ {z1,..., 2} O

We may say that the set of vertices {z1,...,2:} constructed in Proposition
2.1 a system of representatives for the endblocks @1, ..., Q;.

Now we consider the circuit graphs. As is defined in the preceding section,
a 2-connected plane graph G is a circuit graph, if, for each vertex cut S with
|S| = 2, every component of G — S contains a vertex of 9G. We say that a graph
G is a block-circuit graph if each block of GG is a circuit graph. We begin with
the theorem of Barnette [1]; even if our results are a little stronger than those
of his, we can prove them by almost similar method; i.e., by induction on the
number of edges lying in the interior of the given circuit graph as he did. We
will therefore omit to prove.

Lemma 2.2. Let G be a circuit graph.
(1) Ifu,v € V(8G), then there exists a spanning 3-tree T in G with dp(u) =
1 and dr(v) < 2.
(2) If u,v,w € V(3G), then there exists a spanning 3-tree T in G with
dr(u) <2, dr(v) <2 and dr(w) < 2.
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Corollary 2.3. Let G be a connected block-circuit graph containing 2 endblocks
Q and Q' whose articulations are w and ', respectively. Further let v € V(0Q)\

{u} and v' € V(dQ') \ {v'} be arbitrary given. Then there exists a spanning
3-tree T in G — v with dp(v) < 2.

Corollary 2.4. Let G be a connected block-circuit graph containing 3 endblocks
Q, Q' and Q" whose articulations are u, u' and v, respectively. Further let
v e V(0Q)\{u}, v ¢ V(OQ)\{v'} and v"" € V(8Q")\ {u"} be arbitrary given.
Then there exists a spanning 3-tree T in G with dp(v) < 2, dr(v") < 2 and
dp(v') < 2.

Now we can give the final result in this section, which is a generalization of
Corollary 2.4 and plays crucial role in the next section.

Proposition 2.5. Let G be a connected block-circuit graph containing t end-
blocks Q)+, ... ,Q: whose articulations are uy, ... ,us, respectively. Further let
v; € V(0Q:)\{w:}, (i =1,...,t). Then, for arbitrary given 3 vertices vy, U, Up, €
{v1,..., v}, there exists a spanning 3-forest F in G with dg(v;) < 2 for all
i€ {l,...,t} containing exactly t — 2 components, such that v, v, and vy, lie
on a component of F' and each of the remaining components contains exactly
one vertex of {v1,..., v} \ {v, Um, vn}-

Proof. We assume without loss of generality that {l{,m,n} = {t—2,¢t—1,t}, and
we construct iteratively ¢ — 2 connected induced subgraphs Go, G4, ..., Gz of
G with

t—3 t—3
G=|J6G; and ||JGi|UG;={z;} (=1,...,t-3) (*)
=0 i=0
i#]
such that G; (j =1,...,t— 3) has a linear decomposition.

Obviously there exists exactly one minimally connected induced subgraph
(denoted by Gy) with vy, v, vs € V(Go) and v; ¢ Go for all j € {1,...,t}\
{l{,m,n}, such that it E(Q) N E(Gy) # 0 for a block Q of G, then it must be
hold @ C Gy.

Now we assume that for j € {1,... ,t— 3}, Go,...,G;_1 are already con-
structed. From the decomposition property and the connectedness number of
G there exists exactly one connected induced subgraph G; satistying the prop-
erties (*) above. Then we easily see that Gy, Gy,...,G; 3 satisfy the desired
properties.

By Corollary 2.4 there exists a spanning 3-tree Ty in Gg with dg, (v;) < 2,
dry(vm) < 2 and dp,(v,) < 2. For j = 1,...,t—3 we use Corollary 2.3 to obtain
a spanning 3-tree Tj in G — z; with dr,(v;) < 2. By setting F' = U;;?i T; we
get a spanning 3-forest in G which satisfies the properties as we wanted. U

3. Spanning 3-forests in a bridge
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In this section, a spanning 3-forest in a bridge of a tight (P, P’)-semiring of
type k (k = 0,1,2) will be constructed, such that neither of its components
contains a vertex of P and that of P’ simultaneously. In order to simplify to
describe the following successive theorems or formulations, it will be assumed
that every bridge contains at least one inner block. However we can similarly
verify that the assertions are also true for the bridges containing no inner blocks.

Theorem 3.1. Let B be a bridge of type 0 of a tight (P, P’)-semiring in an
LV-graph, and let xo and T be the first and the last vertex of attachment of B
on P, respectively. Then there exists a spanning 3-forest F' in B such that:

(1) Each component of F' contains exactly one vertex of attachment of B on
P.

(2) dp(z) <1 for each vertex z of attachment of B on P.

(3) dF(lL‘()) = dp(f) =0.

Proof. Let us denote Ap the set of blocks of B — P defined at the beginning of
this section. From Proposition 2.1 each block of B — P is either an inner block
or is contained in Ag. Now let @4,. .., @y be the inner endblocks of B — P with
representatives z1,...,x;. Let further v; (i = 1,...,t) be a vertex of @Q; — u;
adjacent to z;, where u; is the articulation of @;. Finally we set H=HU {=z},
where 7 is the last vertex of H adjacent to T and 2% is a new edge, and we denote
Qo the first block in Ap. Now we first consider the case that (g is an endblock
of H. B

In this case we see that Q; (i = 0,1,...,¢), 27 are the endblocks of H. Since
V(B)NV(P') =0, Qo contains at least 2 vertices adjacent to P, and we have
zo # x1. By Proposition 2.5 there exists a spanning 3-forest F' in H with

dr(v;) < 2foralli=1,..., ¢ which contains exactly ¢ components, such that vy,
v and 7 lie on a common component of F’ and each of the remaining components
contains exactly one v; (i =1,...,¢—1). Then, by setting

F=[F U{zw|i=1,... t}\ {z2}]U[V(P)nV(B)]

we obtain a spanning 3-forest in B satisfying desired conditions.

Now consider the case that Qg is not an endblock of H. Note in this case that
Q: (i = 1,...,t), 27 are the endblocks of H. Since |V(B) NV (P)| > 3, there
exists a vertex £ of attachment of B with & # xy and # # . First consider the
case that H contains only one endblock; i.e., H is 2-connected. By choosing a
vertex ¢ of H adjacent to &, we obtain a spanning 3-tree T’ in HU {0}, since it
contains at most 3 endblocks. Then, clearly F = [T —z]U[V(B)NV (P)] satisfies
the assertion (1)—(3).

Now assume that H contains at least 2 endblocks. Then, since H has at
least 3 endblocks, it follows that there exists a spanning 3-forest F” in H with
dp/(v;) < 2 for all ¢ = 1,...,t which contains exactly ¢t — 1 components, such
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that one of the components of F’ contains the vertices v;, v; and Z and each of
the remaining t —2 components contains one of the vertices {ve,... ,v;_1} Then

F=[Fu{zwl|i=2,...,t}\{zz}]U[V(P)NV(B)]

obviously is a spanning 3-forest in B satisfying the conditions in the theorem as
we wanted. t

Next, we consider the existence of a spanning 3-forest in a bridge of type 1.

Theorem 3.2. Let B be a bridge of type 1 of a tight (P, P')-semiring in an
LV-graph, and let x¢ be the first vertex of attachment of B on P. Let further
V(B)NV(P') = {y}. Then there exists a spanning 3-forest F' in B such that:
(1) Each component of F' contains exactly one vertex of attachment of B on
PUP.
(2) dp{zo) =0 and dp(x) < 1 for each vertex = of attachment of B on P.
(3) dr(y) = 0.

Proof. Let H, {Q1,...,Q}, {z1,...,2¢} and {v1,...,v,} be vertices or sub-
graphs defined in the proof of Theorem 3.1. Let us further denote Ap the set
of blocks defined at the beginning of this section, whose first and last endblocks
are denoted by @ and @Q (in the clockwise) with the articulations u and %, re-
spectively. Then there are 3 cases to consider:

(a) Q is an endblock of H, and y is adjacent to 4Q — u.

(b) @ is an endblock of H, but y is not adjacent to dQ — u.

(c) @ is not an endblock of H.

Assume first that @ is an endblock of H, and y is adjacent to 0Q — u. Let
us denote v € V(9Q) \ {u} which is adjacent to y, and set H = HU {yv}. If Q
is an endblock of H , then we see that Q, Q1,...,Q; and yv are all endblocks
of H. (Notice that in this case ) is not an endblock of H .) Using Proposition
2.5, we obtain a spanning 3-forest F’ in H with dp (v;)<2forallie {1,...,t}
which has exactly ¢t components, such that one of the components of F’ contains
the vertices x1,v,y and each of the remaining components contains one vertex
of {x2,...,2+}, where v is an arbitrary vertex of 3Q — u. Then

F=[F'U{zwli=1,... 3\ {y}]U[V(P)NV(B)]

is a spanning 3-forest in B as desired.

On the other hand, if Q is not an endblock of H , we add a new edge 27 as in the
proof of Theorem 3.1. Then, in this case we can verify that Q1,...,Qy, ¥z, 2Z
are all endblocks of H. We can also use Proposition 2.5 to find a 3-forest F’ of
H satistying the corresponding properties above. By setting

F=[F'U{zw|i=1,...,t}\ {yv, 22}]U [V(P) N V(B)]
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we obtain a spanning 3-forest in B satisfying the desired properties.

Now we consider the case (b); i.e., () is an endblock of H, but y is not adjacent
to 0Q — u. Since G is 3-connected, there exists a vertex vy € V(9Q) \ {u} with
zovg € E(B), where z is the first vertex of attachment of B on P. Let v be an
arbitrary vertex of B adjacent to y, and set H=H U{yv, 2ovo }. Then in this case
Tove, Q1,-..,Qs, yv are all endblocks of H. Thus we can also use Proposition
2.5 to obtain a spanning 3-forest F’ in H with dp (v;) <2forallie{1,...,¢}
which has exactly ¢ components, such that one of the components of F’ contains
the vertices xg, v,y and each of the remaining components contains one vertex
of {z1,...,2}. Then, by setting

F=[FU{zw|i=1,...,t}\ {ywwHU[V(P)NV(B)]

we obtain a spanning 3-forest in B.

It remains to consider the case (c); i.e., @ is not an endblock of H. Without
loss of generality we may assume that @’ is an endblock of H, for otherwise it is
suffices to add a new edge, and then we use the argument similar to the case 1).
Now choose an arbitrary vertex v adjacent to y in H, and set H = H U {yv}.
Then we can clearly see that Qq,...,Q,, yv and Q' are all endblocks of H. By
defining a 3-forest F' spanning B as described in the case 1), we also obtain a
subgraph satisfying the desired conditions. (]

Corollary 3.3. Let B, 2y and y as in Theorem 3.2 be given. Further let T be
the last vertex of attachment of B on P. Then there exists a spanning 3-forest
F in B such that:

(1) One component of F contains the vertices T and y, and each of the
remaining components of F' contains exactly one vertex of attachment of
P.

(2) dr(x0) =0, dp(T) =1 and dp(x) < 1 for each vertex x of attachment of
BonP.

(3) dr(y) =1.

Proof. Let us designate by F” the spanning 3-forest in B satisfying the conditions
described in Theorem 3.2. If v is the vertex chosen in the proof of the theorem,
F'= F'U {vy} is also a spanning 3-forest in B with dp(29) = 0 and dp(z) < 1
for each vertex z € V(B) N V(P). Note in this case that dp(Z) = dp(T) = 1
from the construction of F' and F’. In particular, since the edge vy is added,
we have drp(y) = dp/(y) +1 =0+ 1 = 2. Therefore the constructed 3-forest F'
satisfies the assertions in this corollary. g

Finally we investigate the bridges of type 2.

Theorem 3.4. Let B be a bridge of type 2 of a tight (P, P')-semiring in an
LV-graph. Let xq be the first vertex of attachment of B on P and let {y1,y2} =
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V(B)NV(P"). Then there exists a spanning 3-forest F' in B such that:
(1) A component T of F contains both y; and vy, but it does not contain a
vertex of attachment of B on P.

(2) Each component of F — T contains exactly one vertex of attachment of
BonP.

(3) dr(xo) =0 and dp(z) <1 for each vertex z of attachment of B on P.
(4) dr(y1) = dr(y2) = L.

Proof. Set II = B — (P UP’), and let Ag be the subgraph of B defined at
the beginning of this section. We will decompose the graph H into 2 induced
subgraphs H, and H, as follows:

If H contains no outer block, then we set Hs = {yi,y2}. Otherwise we
may denote @' the outer endblock of H, and further the outer blocks of H
by Q" = Q},Q%,...,Q,, with the articulations wuy,...,u,, 1, respectively. In

addition we denote by u  the articulation in B connecting @, with Ag. We
set Hy = ({Q,|i=1,...,m} — uy, and then H; = H — Hy. Then we can
easily verify that the graphs H; and H, are connected, and moreover they are
induced subgraphs with V(H,) UV (H) = V(H) and V(H1)NV (Hz) = 0. Now,
for i = 1,2, we designate by B; the subgraph of B induced by H; and the
vertices of attachment of B, on P and P’. For the subgraph By, by using the
arguments similar to those in Theorem 3.2, we can find a spanning 3-forest F}
with dp, (20) = 0 and dp, (z) < 1 for all z € V(By) N V(P), such that each
component of F; contains exactly one vertex of attachment of B; (or B) on P.

Now we construct a spanning 3-tree Ty in Bs. If Hy = {4192}, then set
By = Hy = {y1y2}. On the other hand, if H contains an outer block (i.e.,
Hy # 0), we divide into two cases, which deal with the connectedness number of
Q@ — Um. Consider the case that Q', — u,, is connected, but not 2-connected.
Since G is 3-connected and @, —,, has a linear decomposition, they follow that
there exist a vertex v € V(95) \ {w} and v/ € V(85') \ {w'} with y,v € E(B)
and ypv" € E(B), where S and S’ are the endblocks of @}, — w;, with the
articulations w and w’, respectively. But, since Hy can in this case contain
at most 3 endblocks, we obtain a 3-tree (say 7”) in Hs with dr(v) < 2 and
dr(v') < 2. Then we see that To = T" U {y1v, 420} is a spanning 3-tree in B,
with dr,(y1) = 1 and dpy(y2) = 1.

Assume now that Q7 —up, is 2-connected. From the connectedness number of
G we can find a vertex v € V(9Q! )\ {tm—1, um } such that v is adjacent to either
Y1 or 2. We may without loss of generality assume that yyv € E(B). Then, in
this case we can also obtain a vertex v' € V(0Q}) \ {u1} with yov" € E(B), and
therefore there exists a 3-tree (say T') in Hy with dp(v) < 2 and dp/ (v') < 2.
We set T, = T" U {y1v, y2v'}, which is a spanning 3-tree in Bs with drp,(y1) =1
and dp, (y2) = 1.

Finally, by setting F' = F} U T5, we obtain a spanning 3-forest which satisfies
the assertions of this theorem. Our proof is complete. ]
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Corollary 3.5. Let B, xg, y1 and y» as in Theorem 3.4 be given. Further
assume |V (B) NV (P)| > 2. Then there exists a spanning 3-forest F in B such
that:

(1) A component T of F contains ya, but it does not contain a vertex of
attachment of B on P.

(2) Each component of F — T contains exactly one vertex of attachment of
B on P, and moreover one of them contains the vertex y;.

(3) dr(xo) = 0 and dr(x) < 1 for each vertex x of attachment of B on P.

(4) dr(y1) =1 and dp(y2) < 1.

Proof. Let H, Ap and {Q1,...,Q;:} be defined in the proof of Theorem 3.4.
Analogously we define a set of representatives {x1,...,z:} of {Q1,...,Q;} and
a set of vertices {v1,...,v:} of B with v; € 0Q; —u; and z;v; € E(B), where u;
is the articulation of Q; (¢ = 1,...,t). Since it can be similarly verified for the
remaining cases, we will prove the most general case that H contains 2 endblocks
(say Q and Q') in Ap and an endblock (say Q. Then

Ql)"' aQta Q7 Q/ and @

are all endblocks of Ag. We first consider the case that there exists a vertex
v € V(0Q) with yyv € E(B). In this case we use Proposition 2.5 to obtain
a spanning 3-forest F’ in H with dp/(v) < 2 and dp/(v;) < 2 (i = 1,...,¢),
such that F’ contains exactly t + 1 components T1,..., Ty, Ty, with v, €
V(T1), ve V(Tiyr and v; € V(T;) (i =2, ... ,t), where v’ is an arbitrary vertex
of 9Q'" adjacent to z’. Then it is not hard to verify that

F=FuU{zu,...,zw, 20, yio} UV(B)N V(P U P

is a spanning 3-forest in B satisfying the assertions in this corollary.

In order to consider the case that there exists no vertex of @ adjacent to 1,
note first that z¢ # z, and 2'v' € E(B), where ' is a vertex of attachment on
P and v’ is a vertex of Q. In this case we use the similar argument above to
obtain a spanning 3-forest F’ in H satisfying the corresponding properties. By
setting

F=F'U{zv1,...,20, 2"V, no} U [V(B)N V(P U P

we clearly obtain a spanning 3-forest in B as desired, where v is the vertex of
0@ selected above. Ol

Corollary 3.6. Let B, y; and ys as in Theorem 3.4 be given. Further assume
V(B) N V(P) = {x¢}. Then there exists a spanning 3-forest F in B which
contains exactly two components Ty and T, such that:

(1) V(Tl) - {yl} and g,y € V(Tg)
(2) dr(z0) = dp(y2) = 1.
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Proof. By the assumption B contains exactly 3 vertices zg, y1 and ys of at-
tachment on P U P’, and therefore from the fact that G is 3-connected H =
B — (PUP’) has at most 3 endblocks. We will only prove the case that H con-
tains 3 endblocks @, Q' and @ with the articulation u, v’ and @, respectively.
(The remaining cases can be similarly verified.)

From the planarity of G each endblock of H (except for its articulation) is
adjacent to exactly 2 vertices of attachment of PUP’. Without loss of generality
we may assume that ) —u is adjacent to T and y1, Q' —u’ adjacent to T and s,
and Q—7 to y1 and yo. Further denote v and T the vertices of Q@ —u adjacent to T
and yg, respectively. By Corollary 2.4 there exists a spanning 3-tree T in H with
dr/(v) <2 and dr/(T) < 2. Then, by setting T} = {y1} and Ty = T'"U{vT, Tya },
we obtain s spanning 3-forest T = T} U T which satisfies the assertions (1) and
(2). |
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