SOFT BCC-ALGEBRAS

  • Published : 2009.09.30

Abstract

Molodtsov [D. Molodtsov, Soft set theory First results, Comput. Math. Appl. 37 (1999) 19-31] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. In this paper we apply the notion of soft sets by Molodtsov to the theory of BCC-algebras. The notion of (trivial, whole) soft BCC-algebras and soft BCC-subalgebras are introduced, and several examples are provided. Relations between a fuzzy subalgebra and a soft BCC-algebra are given, and the characterization of soft BCC-algebras is established.

Keywords

References

  1. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  2. D. Chen, E. C. C. Tsang, D. S. Yeunh and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  3. B. Davvaz, W. A. Dudek and Y. B. Jun, Intuitionistic fuzzy Hv-submodules, Inform. Sci. 176 (2006), 285-300. https://doi.org/10.1016/j.ins.2004.10.009
  4. W. A. Dudek, B. Davvaz and Y. B. Jun, On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Inform. Sci. 170 (2005), 251-262. https://doi.org/10.1016/j.ins.2004.02.025
  5. W. A. Dudek and X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J. 48(123) (1998), 21-29. https://doi.org/10.1023/A:1022407325810
  6. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008), 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  7. Y. B. Jun, M. A. Ozturk and C. H. Park, Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Inform. Sci. 177 (2007), 4662- 4677. https://doi.org/10.1016/j.ins.2007.03.020
  8. Y. B. Jun and W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK- algebras, Inform. Sci. 170 (2005), 351-361. https://doi.org/10.1016/j.ins.2004.03.009
  9. Y. B. Jun and S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176 (2006), 3079-3093. https://doi.org/10.1016/j.ins.2005.09.002
  10. Y. B. Jun, Y. Xu and J. Ma, Redefined fuzzy implicative filters, Inform. Sci. 177 (2007), 1422-1429.
  11. Y. B. Jun, Y. Xu and X. H. Zhang, Fuzzy filters of MTL-algebras, Inform. Sci. 175 (2005), 120-138. https://doi.org/10.1016/j.ins.2004.11.004
  12. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  13. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  14. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999), 19-31.
  15. Z. Pawlak and A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007), 3-27. https://doi.org/10.1016/j.ins.2006.06.003
  16. Z. Pawlak and A. Skowron, it Rough sets: Some extensions, Inform. Sci. 177 (2007), 28-40. https://doi.org/10.1016/j.ins.2006.06.006
  17. Z. Pawlak and A. Skowron, Rough sets and Boolean reasoning, Inform. Sci. 177 (2007), 41-73. https://doi.org/10.1016/j.ins.2006.06.007
  18. A. Rosenfeld, it Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. https://doi.org/10.1016/0022-247X(71)90199-5
  19. L. A. Zadeh, From circuit theory to system theory, Proc. Inst. Radio Eng. 50 (1962), 856-865.
  20. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  21. L. A. Zadeh, Toward a generalized theory of uncertainty (GTU) - an outline, Inform. Sci. 172 (2005), 1-40. https://doi.org/10.1016/j.ins.2005.01.017