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SOLVABILITY OF IMPULSIVE EVOLUTION DIFFERENTIAL
INCLUSIONS WITH NONLOCAL CONDITIONS IN BANACH
SPACE

Y. K. CHANG* AL ANGURAJ AND K. KARTHIKEYAN

ABSTRACT. In this paper, we prove existence results for first order im-
pulsive evolution differential inclusions with nonlocal condition by using a
fixed point theorem for condensing multi-valued maps. An example is also
given to illustrate the obtained results.
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1. Introduction

The starting point of this paper is the work in paper [5], where the authors
have investigated the existence of solutions for the first order controllability
system.

L10) — gt (0] € AW + Fu) + (Bu)e), 1€ T =100
y(0) = yo
by using a fixed point theorem for multivalued maps to Dhage combined with an
evolution system. We are going to study the nonlocal impulsive Cauchy problem
for this evolution system without controllability using a fixed point theorem for
condensing multi-valued maps. We shall study the existence of solutions for the
following evolution system in a Banach space X (with norm || - ||)

%{y(t) -Gt y()] A(t)y(t) + F(tyt),t € J = [0,a], t # tr, (1)
Aylime, = ILe(y(ty)), k=12,...,m, (2)
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y(0) +9(y) = o, (3)

where F: J x X — P(X) is a multi-valued map, A(t) generates an evolution
system, G : J x X — X is a given function and Ayli—, = y(t{) — y(t; ), where
y(t;) and y(t]) represent the left and right limits of y(¢) at t = t.

The nonlocal Cauchy problem was considered by Byszewski [2] and the im-
portance of nonlocal conditions in different fields has been discussed in [2] and
[6] and the references. In the past several years results on existence, uniqueness
and stability of differential and functional differential abstract evolution Cauchy
problem with nonlocal conditions have been studied by Byszewski and Laksh-
mikantham [4], by Byszewski [3], by Ezzinibi et al. [8], by Fu [10], by Fu and
Ezzinbi [11] et. al. For results about impulsive differential systems, we refer
readers to [13].

The rest of this paper is organized as follows: In section 2 we recall briefly
some basic definitions and preliminary facts about multi-valued maps and evo-
lution systems which will be used throughout this paper. The existence theorem
for the problem (1)-(3) and its proof is arranged in section 3. Finally, in section
4 an example is presented to illustrate the applications of the obtained result.

2. Preliminaries

Let (X, ]| - ||) be a Banach space. C(J, X) is the Banach space of continuous
functions from J to X with the norm ||z||; = sup{||z(¢)| : ¢t € J}. B(z) denotes
the Banach space of bounded linear operators from X to X, with the norm
INlBx)y = sup{||N(z)|| : ||z]| = 1}. A measurable function 2z : J — X is
Bochner integrable if and only if ||z| is Lebegue integrable (For properties of
the Bochner integral see Yosida [16]). L!(J, X) denotes the Banach space of
Bochner integrable functions z : J — Xwith norm ||z z: = [ ||lz(t)||dt.

We use the notations P(X) = {Y € 2% : Y # 0}, Py(X) = {Y € P(X) :
Yclosed},

Py(X) ={Y € P(X) : Y bounded}, P.(X) = {Y € P(X) : Y convex}, and
P(X) ={Y € P(X) : Y compact}.

A multi-valued map F : X — P(X) is said to be convex (closed) valued if
F(x) is convex (closed) for all z € X. F is said to be bounded on bounded sets if
F(B) = U,cp F(z) is bounded in X for all B € Py(X))(i.e., sup,ep{sup{||y|l :
y € F(z)}} <o0).

F is called upper semi-continuous (u.s.c) on X if for each yo € X the set F(yo)
is a nonempty, closed subset of X, and if for each open subset (U) of X containing
F(yo), there exists an open neighborhood A of yo such that F(N) C (U).

F is said to be completely continuous if F(B) is relatively compact for every
B € Py(X). If the multi-valued map F is completely continuous with nonempty
compact values, then F' is u.s.c. if and only if F has a closed graph (i.e., z, —
T, Yn — Y, Yn € F(zy) imply y. € F(x,)). We say that F has a fixed point if
there is € X such that z € F(x).
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A multi-valued map F : J — P.(X) is said to be measurable if for each z € X
the function Y : J — R defined by Y (t) = d(z, F(t)) = inf{||lz — 2|| : 2 € F(t)}
is measurable.

An upper-semi continuous multi-valued map F : X — P(X) is said to be
condensing [7] if for any subset B C X with a/(B) # 0 we have o(F(B)) < a(B),
where o denotes the Kuratowski measure of non-compactness [1].

For more details on multi-valued maps we refer to the books by Deimling [7],
by Hu [12].

Let {A(t) : t € J} be a family of linear operators and satisfy:

(A1) The domain D(A(t)) = D of A(t) is dense in X and independent of
t, A(t) is closed linear operator.

(A2) For each t € J, the resolvent R(), A(t)) exists for all A with ReX < 0
and there exists k£ > 0 such that || R(\, A(t))]| < IMH

(A3) There exist constants H > 0 and 0 < « < 1 such that for ¢t,s,7 € J
ICA(t) — A(sHA™H ()| < HIt — s|*.

(A4) For each t € J and some X € p(A(t)), the resolvent R(\, A(t)) is compact
operator.

To set the framework for our main existence results, we need to introduce the
following definitions.

Definition 1 [15] A two parameter family of bounded linear operators U (%, s),0 <
8 <t < a,on X is called an evolution system if the following two conditions are
satisfied: (1)U(s,s) = I,U(t,r)U(r,s) = U(t,s) for 0 < s <r <t <a.

(ii)(t, s) — U(t, s) is strongly continuous for 0 < s <t < a.

Definition 2 [5] A function y € C(J,X) is called a mild solution of the
problem (1.1)-(1.3) if the following holds: %(0) + g(y) = yo for each 0 <
t < a5 Ayli=r, = Ie(y(t;)), k = 1,...,m, the restriction of y(-) to the inter-
val [0,a) — {t1,t2,...,tm} is continuous and for each s € [0,t) the function
A(s)U(t, s)g(s,y(s)) is integrable and the impulsive integral inclusion

y(t) = U0y — g(y) — GO,y(0)] + G(t,y(t))

t

+/ Ult, s)A(s)G(s, y(s ))ds+/ Ul(t, s)F(s,y(s))ds
+ ) Ul te)Ie(y(ty),

0<tp<t
is satisfied.
Our main results are based on the following lemmas.

Lemma 1. ([14]) Let X be a Banach space. Let F: J x X — Py o o(X) satisfy
that

(i) For each y € X, (t,y) — F(t,y) is measurable with respect to t.
(1) For each t € J,(t,y) — F(t,y) is w.s.c. with respect to y.
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(#1i) For each fized y € C(J, X), the set
Sry ={f € L'(J, X) : f(t) € F(t,y(t)) for a.c t € J}

is nonempty. Let T' be a linear continuous mapping from L*(J,X) — C(J, X).
Then the operator

I'oSp:C(J,X) = Popo(C(J, X)),y — (T'oSp)(y) :=T(Sk,y)
is closed graph operator in C(J, X) x C(J, X).

Lemma 2. ([7]) Let Q be bounded and convex set in Banach space X. F : ) —
P(Q) is a w.s.c., condensing multi-valued map. If for every x € Q, F(x) is a
closed and convex set in Q, then F' has a fized point in Q.

Lemma 3. ([15], Theorem 6.1) Under the assumptions (A1)-(A3), there is a
unique evolution system U(t, s) on 0 < s <t < a, satisfying:

(@) U s)| <C for 0<s<t<a.

(it) For 0 < s <t < bU(t,s) : X — D and t — U(L,s) is strongly
differential in X. The derivative éU (t,s) € L(X) and it is strongly continuous
on 0 < s <t <a. Moreover,

%U(t, )+ AU, s) =0 for 0<s<t<a

15U 8)l = DU, 8)] < -
and ||A@R)U(t, s)A(s)"|| <C  for 0<s<t<bh.
(¢i2) For every v € D and t € [0,a],U(t, s)v is differentiable with respect to s
om0<s<t<aand Z£U( s ="U(ts)A(s)v.

Lemma 4. ([9]) Let {A(t) : t € J} satisfy conditions (A1)-(A4). If {U(t,s) :
0 < s <t < a} is the linear evolution system generated by {A(t) : t € J}, then
{U(t,s) :0< s <t<a} is a compact operator whenever t — s > 0.

3. Existence result

In order to define the concept of integral solutions for the problem(1)-(3), we
shall consider the following space
Q={y:[0,a] - X : y(t) is continuous everywhere except for some t; at which
y(t, ) and y(¢f), k=1,2,...,m, exist and y(t; ) = y(ts)}-

Obviously, for any t € J and y € Q, Q is a Banach space with the norm

lylle = sup{|y(t)] : t € [0,al}.

Let us list the following hypotheses:

(H1) U(t,s) is a compact operator whenever ¢t — s > 0 and there exists a
constant A > 0 such that | U(t, s)|| < M for 0 <s <t < a.

(H2) There exists a constant M; > 0 such that ||A(¢)A(0) ]| < M; for t € J.
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(H3) The function G : J x X — D is continuous and there exists constants
L, L; > 0 such that

[A0)G(E,u) = A(0)G(t, )| < L(|lu — vl)) foru,v € X,
and
[AQ)G(t,u)|| < Li(|Jufl + 1), foru e X.

(H4) The multi-valued map F : J x X — P..,(X) satisfies the following
conditions:

(i) for each t € J, the function F(¢,-) : X — P..,(X) is u.s.c. and for each
y € X, the function F'(-,y) is measurable. And for each fixed u € €2 the set

Spau={f € L"J,X): f(t) € F(t,u) a.e t € J} is nonempty.
(ii) for each positive number I € N, there exists a positive function w(l)
dependent, on [ such that
- w(l)
sup ||F(t,y)|| <w(l) and lim inf —= = v < oo,
lylI<t oo L

where
IFE )l =sup{|[fll : f € F(t,v), llyl = sup [ly(s)|I}-
0<s<a

(H5) g : © — X satisfies that
(i) there exist positive constants Ly and L} such that

llg(w)|| < Laljullq + Lf for all u € Q.

(ii) ¢ is a completely continuous map.

(H6) I, € C(X,X),k =1,2,...,m are all bounded, that is there exist con-
stant dg, k = 1,2,...,m such that || [ (y)| < dg,z € X.

Theorem 1. Let yo € X. If the hypotheses (H1)-(H6) are satisfied, then the
system(1)-(8) has a mild solution provided that,

Lo == L{(M + )| A©) Y| + aMM;] < 1, (4)
and
(IA0) MLy + Lo)M + |JA(0) || Ly + aM M, Ly + aMy < 1. (5)
Proof. Consider the operator N : Q — P(Q) defined by

Ny)=uveQ:ult) = U0y —g(y) — G0,y(0)] + G(t,y(t))

+/ A(S)U(t, 5)G(s, (s))ds+/0 Ult,s)f(s)ds

+ > Ut t)Ie(y(ty)), f €Sy, te .

O<tp <t

Clearly the fixed points of N are mild solutions to (1)-(3).



1240 Y .K. Chang et al.

We show that N satisfies the hypotheses of lemma 4. For the sake of conve-
nience, we subdivide the proof into several steps.

Step 1. There exists a positive number [ € N such that N(B;) C B;, where
Bi={yeQ:|y®)l <,0<t<a}

For each positive number I, B; is clearly a bounded closed convex set in .
We claim that there exists a positive integer [ such that N(B;) C B, where
N(B) = Uyes, N(y). If it is not true, then for each positive integer , there
exist functions y;(-) € By and w(-) € N(y;), but w;(-) does not belongs to By,
that is [lui(t)|| > I for some ¢(I) € [0, a], where ¢(I) denotes t is dependent on .
However, on the other hand, we have,

<@l = U 0)yo — 9(u) — G(0, 5i(0))]

()
LGt ut) + / U(t, 5) A()G(s, 1 (s))ds

+ [ Ut 9seas
+ ) U t)Ik(y(ty)]

0<ti<t
where f; € Sp,,. Hence,
I< [lU(t0)[yo — g(3) — A0)A(0)~"G(0, i(0))]]
+ A0)A(0) T G (¢, wi(t |+||/ 0)A(0) ™ U(t, 5)A(s)G (s, ui(s))ds|

+ / U(t, ) fi(s)ds]
S U )]

0<trp <t

M{llyoll + L2l + Ly + [|A0) || La (L +1)

IA

HIA©) T+ 1) + aMM Ly (L + 1) + aMw(l) + Y Md,
k=1

IN

Mlyoll + Lol + Ly] + (M + D[ A©0) [ L1 (L + 1)

+aMMiLi(l+1) + aMW(l) + > Mdy.
k=1

Dividing on both sides by { and taking the lower limit as [ — +oco, we get
(IJAQ) "Ly + La)M + ||A(0) Y| Ly + aM MLy +aM~y > 1,

which contradicts (4). Hence for some positive integer I, N(B;) C B;.
Step 2. N(y) is convex for each y € Q.



Existence of solutions 1241

Indeed, if u1,us € N(y), then there exist fi, fy € SFy, such that for each
t € J we have,

uit) = U(t, 9)[yo — g(y) — G(0,y(0))] + G(t, y(1))

t

+/tU(t s)A(s)G(s, y(s ))ds+/ Ult, s)fi(s)ds
+ Y Ut Ik(y(ty)), i=1,2.

0<ty<t
Let 0 < A < 1. Then for each t € J we have,
(Aur + (1 = Nu2)(t) = U(t,s)[yo — g(y) — G(0,y(0))] + G(t, y(t))

+/O U(t, s)A(s)G(s,y(s))ds

i /Ot U(t, $)[Af1(s) + (1 — Afa(s))]ds
+ Z Ut te) Ik (y(ty, )

O<tp <t
Since Sp,y is convex (because F has convex values), Auj + (1 — Nua € N(y).
Step 3. N(y) is closed for each y € €.

Let {Zn}n>0 € N(y) such that z, — z in ©. Then z ¢ Q and there exists
fn € Sk, such that, for every ¢ € [0, al,

zn(t) = Ut 9)yo — g(y) — G(0,y(0))] + G(¢, y(t))

+ / Ut ) A8 s, y(s))ds + /0 U(t, 8) fu(s)ds
+ Y Ut te)Ik(y(ty)).

O<tep<t

Using the fact that F has compact values, we may pass to a subsequence if

necessary to get that f, converges to f in L'([0,a], X) and hence f € Sp,,.
Then for each ¢ € [0, a],

za(t) = 2(t) = Ut s)lyo — gy) — G(0,y(0)] + G (¢, y(1))

+/Ot U(t,s)A(s)G(s,y(s))ds+/ Ult,s)f(s)ds

0
+ Y Ut t)In(y(ty)), te .
0<t, <t
Thus, = € N(y).
Step 4. N is u.s.c. and condensing.

For this purpose, we decompose N as Nj + Ny, where the operators Ny, Ny
are defined on By respectively by

(Miy)(t) = G(t, y(t)) — U(t, 0)G(0,y(0)) +/0 U(t, s)A(s)G (s, y(s))ds,
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Noy = {ueQ:u(t)=U(t0)yo — g(v)] + 3 U(t, s)f(s)ds
+ Zo<tk<t U(t, tk)Ik(y(t;))v fe SF,y}~

We will verify that N is a contraction while N» is a completely continuous
operator. To prove that Ny is a contraction, we take yi,y2 € B; arbitrarily.
Then for each ¢t € J and by condition (H3), we have that,

[(N1y2) () — (Niga) (D)l
< NG n®) - Gty
U, 0)[G(0,31(0)) — G(0, y2(0))]l

+ / (£, 5)A(S)[G (s, 11(5)) — (s, a(5)))ds]
14(0)

THAOG(E 31 (1) — AO)G( )]
+HU (£, 0)A(0) " A(0)G(0,41(0)) — A(0)G(0, 52(0))]]

I / )1 AQ)U(t, 5) A()(C 5,11 () — G(s, ya(5))ds]

< (04 DIA©) L+ [ A LS sup () - )]
<

LM + D[ A0)™ || + aM M) Sup [y1(s) = y2(s)]
= Lo sup [lyi(s) — ya(s)l-
0<s<a
Thus
[Niy1 — M|l < Lollyr — 2l-

Therefore, by assumption 0 < Ly < 1 (see (4)), we obtain that N;is a contrac-
tion.

Next, we show that N3 is u.s.c. and condensing.

(i) No(By) is clearly bounded.

(i) Na2(B) is equicontinuous.

Let 71,72 € J,71 < 2. Let y € By and u € Na(y). Then there exists f € Sp,y
such that for each ¢t € J, we have,

w(t) = U(t,0)lo — 9(w)) + / Ul ) (s + S Ut I(ultg).

0<tr<t

Then
lu(r) —u(r)l| < U (r2,0) — U, 0))(wo — g(w))]
+ / (728) — U(r1, )] F(5)ds]

] / U, ) (s)ds]
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+ > U, te) = Ulry,te) di

O<tp <1

+ Z Mdy,.

71 <t <2

The right-hand side tends to zero as 7o — 71 — 0, since U(t, s) is strongly con-
tinuous, and the compactness of U{t, s),t — s > 0 implies the continuity in the
uniform operator topology.

(iii) (N2By)(t) is pre-compact for each t € J, where NoBy(t) = {u(t) : u €
Nz(Bl), tc J}

Obviously, by conditions (H5)(ii), (N2B;)(t) is relatively compact in Q for
t=0. Let 0 <t < a be fixed and 0 < € < t. Fory € B; and u € Na(y), there
exists a function f € Sp, such that,

wt) = U)o gly)] + / U, ) f(s)ds

+/t U(t,s)f(s)ds

+ Y Ul t)Ie(y(ty))-
0<tr<t
Define

wlt) = U)o - 9(y)] / Ut ) f()ds

+ > Ul t)Ie(y(ty)

O<tp<t
- U0 - g 1 U6 [ U= e ) f(s)ds

Y Ut Ik (u(ty).
0<tr <t
Since U(t,s)(t — s > 0) is compact, the set U.(t) = {uc(t) : u € No(By)|| is
relatively compact in 2 for every €, 0 < € < t. Moreover, for every u € Na(B;),

¢
¢
[ult) —uc®ll = [ Ut 9)f(s)dsll <M [; w(l)ds = Muw(De.
t—e
As € — 0, we note that there are relatively compact sets arbitrarily close to the
set {u(t) : u € Nao(B)}. So the set {u(t) : u € No(B;)} is relatively compact in
Q.

As a consequence of (i), (ii) and (iii) together with the Arzela-Ascoli theorem
we can conclude that Ny : B — P(B;) is a completely continuous multi-valued
map.

(iv) N3 has a closed graph.
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Let yn — yu,yn € Bi, un € Na(yn), and u,, — u,, we prove that u. € Na(yx).
The relation u, € Na(y,) means that there exists f, € Sk, such that, for each
teJ,

n(®) = U)o~ g(ym)] + / U(t, 5) fu(s)ds
+ Y Ut te) Le(yn(ty)).

0<tr<t
We must prove that there exists f, € Sr,, such that, for each ¢t € J,

wlt) = U0 — glu)] + / UL, 5)f(s)ds
+ Y Ul t)Ie(ys(8)-

O<tp<t
Since Iy, k=1,2,...,m, and g are continuous we have that,
lun — U, 0)yo — 9wa)] = 3 Uty te) Iulyn(t)) — e — U(t,0)[yo — (3]
0<tr<t

- Y U )la 0,
0<tr <t
as n — oo.
Consider the linear continuous operator

LY(J, X) — C(J, X), f—>1"(f)(t):/0 Ul(t,s)f(s)ds

From lemma (1), it follows that T'o Sp is a closed graph operator. Moreover we
have that,

un(t) = U(t,0)lyo — 9(ya)] = Y Ut 1) Iu(yn(ty)) € T(Sry,)-
0<tp<t
In view of y, — v, it follows from lemma 1 that
we(t) = Ut 0)yo — g(y)] = D Ut te)In(ys(t;,)) € T(Sry.),
O0<tp<t
that is, there must exist a f,(t) € Sg,, such that,

u (U (t,0)lyo — 9(y)] — D Ut ti)i(ya(ty )

O0<tr<t

ST () = / U(t, ) f.(s)ds

Therefore, Ny has a closed graph and N> is a completely continuous multi-
valued map with compact value. So Ny is u.s.c. On the there hand N; is a
contraction, hence N = Nj + N3 is u.s.c. and condensing. By the fixed point
theorem lemma 2, there exists a fixed point y(-} for N on B;, which implies the
problem (1)-(3) has a mild solution.
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4. Example

As an application of our result, we consider the following partial differential
inclusions such as

2

0 7]
8t[ (t CE) (tvz<tvx))] - a(t)x)@z(tvx) € Q(t,z(t,m)),
2(4,0)=2(t,1) =0, 2(t}) —2(t;) = L(2(t; ), k=1,...,m

z(0,z) + Zm(g, x)2(8i, y)dy = 20(x),t € J=10,1] ,0<z<1 (6)

where p is a positive integer, 0 < 59 < 81 < - < 8, < 1,and 0 < t; <ty <

- <t < 1, 20(z) € X = L*([0,1]) and a(t,z) is continuous. We can define
respectively that,

G(t,w)(z) = v(t,w(x)),z € [0,1], F(t,w)(z) = Q(t,w(x)),z € [0,1]
glw(t)) = zp:Kiw(ti),w € Q( Q is defined as in section 3),

where

Ki(2)(@) = / i (9, 2)2(3)dy.

And Iy e C(X, X),k =1,...,m, satisfying (H6).

Take X = L2 [0, 1) and also define A( ): X — X by (A@)w)(z) = a(t, z)w”
with domain [D(A) = {w € X : w,w'are absolutely continuous, w” € X, w(0)
=w(l) = 0}].

Let A(t) generate an evolution system U(t, s)([9],[15]) such that (H1) and
(H2) hold.

[A0)G(E, u) — A0)G(t, v)|| < L(||lu — vl|) foru,v € X.
and

[AOG(E, w)ll < Ly(jlufl + 1), foru € X.

Then from Theorem 1, system (6) admits a mild solution on [0,1] under the
above assumptions.
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