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1. Introduction

Controllability of nonlinear systems in abstract spaces has been studied by
Chukwu and Lenhart[6]. Quinn and Carmichael{14] have shown that the control-
lability problem in Banach space can be converted into a fixed pointed problem
for a single-valued mapping. Kwun et al.[11] investigated the controllability and
approximate controllability of delay Vloterra systems by using a fixed point the-
orem. Byszewski and Akcald4] studied the existence of solution of semi-linear
functional-differential evolution nonlocal problem, where —Ais the infinitesi-
mal generator of a compact strongly continuous semigroup. Recently, Fu and
Ezzinbi[8], by using fractional power of operators and Sadovskii’s fixed point the-
orem, studied the existence of mild and strong solutions of semi-linear neutral
tunctional differential evolution equations with nonlocal conditions.

In this paper, by investigating [8], we study the existence, uniqueness, mag-
nitude, continuousness and controllability of solutions for neutral functional
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integro-differential equations in a phase space with nonlocal conditions as fol-
lowing;:
d

Z{o(t) — glt, 2] + As(t)

— f(t,z., /0 tk(t,s,ms)ds)—l—Cu(t), te (0,8, (1.1)

Zl)(t) = ¢(t)7$0 =¢ te ("OO’O]»
where X is a Banach space with norm || - || and —A : D(A) — X is the infini-
tesimal generator of a compact analytic semigroup of uniformly bounded linear
operators. A phase space B : (—00,0] — X is a linear space of functions,
g: 0,0} x B — X and k : [0,b] x [0,b] x B — X are continuous functions,
f:]0,b] x Bx X — X is Holder continuous. C is a bounded linear operator of
another Banach space into U. control function u(-) is given in L?([0, 4] : U)

2. Preliminaries

Let 0 € p, then it is possible to define the fractional power A%, for 0 < o < 1,
as a closed linear operator on its domain D{A®). Furthermore, the subspace
D(A%) is dense in X and the expression

lzlla = |A%]l,  z € D(A%),
defines a norm on D(A%). Hereafter we denote by X, the Banach space, and
Xo — Xpg for 0 < 8 < @ < 1 and the imbedding is compact whenever the
resolvent operator of A is compact. For semigroup {T(t);>0}, the following
properties will be used:
(1) there is a M > 1 such that || T(t)|| < M, for all t € J = [0,b].
(2) For any b > 0, there exists a positive constant C, such that

AT ()] < %‘i 0<t<b.

To study the system (1.1), we assume that the histories z; : (—o0,0] — X,
x24(0) = xz(t+6),t > 0,8 € (—oo, 0] belong to some abstract phase space B, which
is defined axiomatically. In this paper, we will employ an axiomatic definition
of the phase space B introduced by Hale and Kato[7]. Thus B will be a linear
space of functions mapping (—oo, 0] into X endowed with a seminorm ||| . We
will assume that B satisfies the following axioms:

(A) If z : (—o0,0+b) — X,b > 0, is continuous on [o,0 + b) and z, € B,
then for every t € [0, o + b) the following conditions hold:
(i) z¢ € B,
(i) lz())llx < H||z¢l|s,
(i) flaells < K(t— o) sup { ()l x 0 <5 <1} + Mt~ o)zl
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where H > 0 is a constant, K : [0, +0c) — [0, +00) is continuous function and
M :]0,+00) — [0,+00) is locally bounded, and H, K, M are independent of
x(t).
{B) B is complete.
Now we give the basic assumptions on the system (1.1).
(H1)  g: |0,b] x B — X is continuous function and 3 € {0,1) then
(i) for 0 < 81,82 € b, ¢1,¢02 € B, there exists L > 0 such that
47951, 01) = A7g(s2,62)|| < LlJs1 = sal + 161 = dell),
(ii) for t € J,, ¢ € B there exists L; > 0 such that

14%(t o)l < Ly (lldlls + 1)t e 7 (2.1)

(H2) f(¢,0,0) =0 and f:[0,b] x B x X — X is Holder continuous, that is,
there exist Ly > 0 and 0 < 01, 02,03 < 1 such that

|t = fsean )| < La(le=slor o —allF + o —well?).

(H3) k(t,s,0) = 0 and k : [0,b] x [0,b] X B — X is continuous function and
there exists L3z > 0 such that
||k(t7 S, 371) - k<tv 5, 1)2)“)( < L3||x1 - 172HB .

3. Existence and uniqueness of mild solution

In this chapter, we prove the existence, uniqueness, magnitude and contin-
uousness of mild solution for system (1.1). System (1.1) can be expressed to
integral equations as following:

t

£(t) = T()[(0) — (0, )] + glt,x0) + / AT(t— s)g(s,2,)ds

+ /O t Tt — s) [Cu(s) +/f <5 s, /0 k(s, T, 1L'T)d’r>] ds, t€ 0,0, (3.1)
z(t) = ¢(t), x0 = ¢ t € (—o0,0l,

where ¢ € B,u ¢ L*([0,b] : U).
Now for system (1.1), it is natural to define the mild solution as following:

Definition 3.1. We say that a continuous function z(-} : [—o0,b] — X is
a mild solution of Cauchy problem (1.1) if for each 0 < ¢ < b, the function
AT(t - 8)g(s,z5),s € [0,1) is integrable and integral equation (3.1) is verified:

Theorem 3.2. Let ¢ € B. If the assumptions (H1)-(H3) are satisfied, a
phase space B satisfies conditions (A), (B) and for v ¢ L*([0,8] : U), L=
max{L, I},

k- P
kE+1

- 1 - /
Lo = MoL(M + 1) + Bcl,ﬁbﬂL + DM Loko(2 + bL3) < (3.2)
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holds, then Caushy problem (1.1) has o unique mild solution. Here My = [|A=7|
and P = |T()¢(0)]| + MIC|l[|ull 220 iy Vb-

Proof. For arbitrary 0 < t < b, define a mapping ® as following:

(®z)(t) = T(1)[$(0) — (0, )] + g(t, ) + /0 AT (t — s)g(s, 5)ds

t s
+/ T —s) [Cu(s) +f (s,xs,/ k(s,, CC.,—)dT)} ds, teJ.
0 0
and for positive number k& > 0, define a nonempty closed bounded set
By :{xeB: e gk,ogtgb}.

Then by equation (2.1) and (H1), for 0 < 8 < 1, since
Ci_g

gtk

I AT(t — 5)g(t, z0)|| < |A'PT(t ~ 5)A%g(t, ze)]l <

(@) ()|
<|NT()P(0)|| + (M + 1)MoLy (k + 1) + %CkgbﬂLl(k +1)

+ MO lull £20 ) VE + bM La(2 + bL3)(k + 1)
<k
holds and so |[(®x)||c(0,61:x) = sup ||(®x)(t)[| < k follows. Thus (®z)(t) € By,
0<t<h

that is, ® is a mapping from Bginto Bj. And since

/Ot T{t - s) [f <5,zs,/os k(s, T, mT)dT> —f (s,ys,/os k(s, T, yT)dT)} ds

< MLz — gl + IeLa(er — I,
by (H2), there exist ko, k3 > 0 such that
s = ysl|7 < kallzs — usll, s — ysll”* < kallzs — ys]|-

Q=

Let kg = max q ko, kg}, then we have

Q < bM Lo(kg + k3(bLs)?®)||zy — yi)| < bM Loko(2 + bL3)||ze — we|,
and so
[(@2)(t) — (@y) ()| < Lo sup [[z(t) — y(@)I|-
0<t<h

Since Ly < 1, ® is contraction mapping and so we get fixed point x(t) € By.
Therefore equation (3.1) is mild solution of Cauchy problem (1.1). O

From the result of theorem 3.1, we can define solution mapping
W : L2([0,6] : U) — C([0,8] : X)
represented by
(Wu)(t) = z(¢: u) € C([0,b] : X)
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Theorem 3.3. Let ¢ € B and u(-) € L%([0,b] : U). Then under the assumptions
(H1)-(H3), solution mapping (Wu)(t) = x(¢ : u) satisfies

(¢ : W)llogopx) < DM|6llawpx) + MICH|ullp2@ ) VD), 0<t<b,
where D depends on M, 3, Ly, Lo, Ls, k and b.

Proof. By assumption,

ot w0
< [re o) - s0.0)]| + ool + | [ a7~ gts.zas

/Ot Tt - s)f (s,m37/08 k(s 7,2 )d’r) ds

< Mjjoll + MC”UHL'Z(o,b:U)\/l;

1
-+ {Mﬁfﬂ)[n {k 4 1) + AIQL](]? -+ 1) -+ Bbﬁci “.ﬂ[/) (k -+ 1)

+ +

/t T — 8)YCu{s)ds
0

M Loko(2 + bLg)}.

Hence

(6 w)

Cp:X) = Sup flz(e - w) ()]

<t
< DM |6l c o,y + MCue 20 50y VD)-
|
Theorem 3.4. Let ¢ € B and u(-) € L*({0,b] : U). Then by the assumptions
(H1)-(H3), solution (3.1) can be eztended to the interval [0,2b} and satisfies
lz(¢ : ulllco,zp:x) < Di(Mlz(d - u)llco,26:x) + MC”“HL?(O,%:U)\/%)v
where Dy depends on M, B, L1, Lo, Ls, k and b.

Proof. For ty, t2 > 0 if 2(¢ : u)(t) is a solution of equation (3.1) at the interval
[0, + 2] , then in case of t € [t1,1 + to],

(¢ : u)(t)

=Tt —t1)[z(¢p:u)(t1) — g(0, )] + g(t, x¢) + / AT(t — 5)g(s, zs)ds

ot ¥
+/ T(t~s)f(s,xs,/ ks, 7,2, )dr ds+/ T(t — s)Culs)ds

t1 0
holds and in case of t € [0, 5],

2(6: u)(tr+1)

=T{)[z(¢: w)(tr) — 9(0,8)] + g(t, z1) +/(; AT (t — 5)g(s + 1, Ts 44, )ds
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t s+t
+/ T(tfs)(f(s+t1,ass+tl,/ k(s + t1,7, 2. )d7T) + Cu(s +t1))ds
0 0

holds. This means that ¢ — (¢ : u)(t; +t) is the solution of equation (3.1) with
initial data z(¢ : u)(¢1) in [0,%2]. Inversely, let 2*(¢ : u)(t) be the solution of
equation (3.1) in [0,#;] and Z*(¢ : u)(¢) be the solution of equation (3.1) with
initial data Z*(¢ - w)(¢1) in [0,8] . If

(¢ u)(t), 0<t<h

:/E\*((b : )(t 7t1), th<t<ti+0,

then x(¢ : w)(t) is the solution of (3.1) in [0,¢; + b]. Thus let 1 = b then
z(¢ : w)(t) is the solution of (3.1) in [0, 2b]. By the assumptions,

<

2(: u)(t) = {

(¢ : w)(t + )|

< Il w)®) — 90, + gt )] + H [ AT = 9ats + baviads

+

t s+b
/ T(t — $)F(5 + b, Tass, / k(s + b, 7, )dr)ds
0 0

+ /ot T(t — s)Cu(s +b)ds

< M||z(¢ : w)(B)]| + MoLy(M + 1)(k + 1) + MCllul 120 26:0yV2b
1
+ B—bﬂcl_BLl(k +1) + bM Ly (k°? + (bL3k)°*)

holds. And so

lz(¢ : w)llceo,20:x) = sup llz(¢ : w)(t + )|

xbx

< Dy (M]ja(@ : w)B) 0.2 + MCull 120,51 VD).
1

Theorem 3.5. Suppose u,, — % asn — oo on U. Then, for each b, x(¢ : un)(t)
converges to x(¢ : u)(t) on C([0,b] : X) as n — oo.

Proof. By theorem 3.2,
(6 : w)(t) = (6 1 un) (O < MCllw— tnl| 20,0y VD,

holds and since u, — u as n — oo, “MCllu — Un||L2(o,b:U)\/5 — 0 follows.
Therefore, x(¢ : uy)(¢) converges to z(¢ : w)(t) on C([0,b]: X) asn — oco. [
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4. Nonlocal controllability
In this chapter, we investigate controllability for neutral functional integro-
differential equation (1.1} by using Sasovskii’s fixed point theorem. That is, we
find reachable conditions from initial value zq to target z(zo : u)(b) = 2! after
time b and consider how will be control function « € L?(|0, b] : U) represented.

Now suppose followings :
(H4) For b € J, define a linear operator W : U — X as following :

W — / "6 — $)Culs)ds.

Then W~1 exists on L3([0,b] : U)/ker W and control function for arbitrary
function x(+) is

— &
u(t) = W e~ T(0)6 — 9(0,6)} — g(b, ) - /U AT(b~ $)g(s, 2.)ds

/:T(b~s)f <5$/0 k(s}T,xT)dT> ds] ().

And by using above control function, define operator P as following:

(Pa)(t) = T(t)[¢ — 9(0,9)] + g(t, 2¢)
+/D AT(t — s)g(s?ga’s)alsqL/0 Tt —s)f (s, 3:5,./0 k(s, T,:)?T)dT) ds
+ [ 2 90w o - TE)9(0) - 9000}
0

b
— g(b, zs) »/ AT (t — s)g(s,x5)ds
0

_ /Ob T(t— 5)f (S’ T, /OS k(s,T, 3;T)d7> } (s)ds.

Theorem 4.1. If the assumptions (H1)-(H4) are satisfied and for ¢ € B, u €
L2([0, 4] : U),

1., b
Ly <MMO + Mo+ 51)&(1]_6) (1 + M|C||W 1§1b) <1 (4.1)
is satisfied, then Cauchy problem (1.1) is controllable on [0,b].
Proof. For positive integer K, let

B = {ve X i |uln <K, 0<t<b},

then Bp is clear bounded, closed convex set on X.
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By (H1) and (2.1),
|AT (¢ = $)g(s, w0)]| = ||4'~PT(t — 5)4%g(s, )

Ci-p
S (t—s)l-#
holds and from the Bocher’s theorem|[14], AT'(t - s)g(s, x,) is integrable at [0, b].
Thus P is well defined on Bg. Now we will verify that there exists appropriate
positive integer K such that PBx C Bk . For positive integer K, if there exists
a function zx(-) € Bk such that Pxx ¢ Bk, then since |Pxg(t)|| > K for
t € [0,b], from

Li(K +1)

K <||P(zx)(®)ll
= |T®]6(0) - 900, 8)] + 9(t, 70)
t t S
+ / AT(t — s)g(s, zs)ds +/ Tt —s)f (s,ms,/ k(s,, .’L’-,-)d’]’) ds
0 0 0
t —
+ [ 1 - 9oW 5 - 1) - 900,0))
0
b
— g(b,xp) — / AT(t — s)g(s,xzs)ds
0
b s
_ / T(t—s)f <s, xs,/ k(s, T, IL’T)dT) ] (s)ds”
0 0
< M{JIgll + MoLy(K + 1)} + MoLa (K + 1)
1
+ Ebﬂcl_ng(K +1)+bMLy (K"Z + (bLgK)"S)
+ MW [l + M (Igll + Mo L (K + 1))
1
+ MoLy(K +1) + Bbﬂcl,ﬁLl(K +1) + bMLoy(K° + (bLgK)US)] b,
dividing on both sides by K and taking the lower limit as K — oo, we get
1< MMyLy + MoLq + %bﬁcl_[ng
~ 1 4
+ MCH W [o{ MMoLy + MoLs + 26°C: gL }
1 —
= iy ¥¢) -1
Ly (MM + My + 50 Crg) (1+ MICHIW )
However, this contradicts (4.1). Hence for positive integer K, PBx C Bg.

Next we will show that operator P has a fixed point on Bg, which implies
Equation (1.1) has a mild solution. To this end, we decompose P as P = P+ P,
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where the operators Py, P; are defined on By, by
(Pra)(t) = T(5)|6(0) — 9(0,6)] + g(t,22)
°t "t &
+ / AT (t — s)g(s, x5)ds + / T{t—s)f <8, ;L“s,/ k{s,T, .’L‘T)d7'> ds,
0 0

0
i

(Pa)t) = [ (e =)W a7 [50) - 910.9)]

0

b
—g(b, m) — '/0 AT(b—s)g(s, xs)ds

- /Ob (b s)f (s, Zg, /03 k{s, T,:I:T)d’r> } (s)ds

for 0 < t < b, and we will verify that P; is a contraction while P, is a compact
operator. To prove Py is a contraction, we take x, ¥y € Bg. Then for each
t € [0,b] and (H1) and equation (3.2), we have

1(PLx)(t) = (P}l < Lo sup f(t) - y(®1-

Thus

|Piz = Piyllc = sup |[(Pra)(®) ~ (Pry)(®)]| < Lolle ~ yllo
0<t<h
and so by Ly < 1, we see that P is a contraction.
To prove P, is a compact operator, firstly we prove that P, is continuous on

Bg. Let sequence {z,} € Bg with {z,} — z in Bg. As n — 00, since

9(8,xns) — g(s,z4),

f <s, xns,/os k(s, T, xm)ah') — f (s,xs, /05 k(s,T, a:T)d7'> )

And so if n — co then we see
|Paa = Pallciosa = sup [[(Pawa)(®) = (Pa)(®)|| — 0.
0t<h
That is, P2 is continuous. Next we prove that {Pyx : x € Bk} is a family of

equicontinuous functions. To prove this we fix t; > 0 and let {5 > t; and € > 0
be enough small. Then we have

|Pee)it) — (Par)it)|

= | [ 90w o @6 900.00) - o)
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- /Ob AT(b — s)g(s,z5)ds — /Ob T(b—s)f (s, s, /O k(s, T, :vr)dT) ](S)ds

VVA“Tal@oﬁ**hl—TwH¢—mm¢n—g@ww
- /Ob AT (b — 8)g(s,x5)ds — /Ob T®b—s)f <$7$s> /Os k(s,, wr)d7> ](s)ds

and let

I

Y = CW ™ [a! - T(){¢ - 9(0,0)} - g(b, )
- " AT(b — S)g(s, z)ds / "I 9y ( v | k(s wﬁdT) J

|Po)(t2) ~ (Pa) )| < / T — 5) Tt - )Y ()]ds
4 [T =) = T 1Y (9 s

N / Tt — Y (3)]ds

ty

holds. And we see that ||{P2z)(t2) — (Pex)(t1)]] tends to zero independently of
z € By T(t) as to — t1 — 0 since the compactness of T(¢)(t > 0) implies the
continuity of T'(£)(¢ > 0) in ¢. Similarly, by using the compactness of the set
g(Bxk ), we can prove that the functions P2,z € Bk are equicontinuous at ¢ = 0.
Hence P, maps By into a family of equicontinuous functions. Finally, we verify

that V(¢t) = {(ng) (t):z¢€ BK} is relatively compact in X. Since
V(0) = (Pz)(0)

- /0 T(0 — s)CW ! [ml —T(b){¢ - 9(0,9)}

—g(b,xp) — /Ob AT(b — s)g(s, zs)ds
_ /ObT(b —38)f (s, Zs, /Os k(s, T, xT)dT> ] (s)ds
=0,

V(0) is relatively compact in X. Let 0 < ¢ < b be fixed and 0 < € < t, and also
for x € Bk, we define
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e

(Prc)t) = |

AY

T(t — $)CW ! [xl ~T(b){¢— 9(0,9)}

= g(b, xp) — /Ob AT (b~ 8)g{s,xs)ds
_ /Ob T s)f (s, X5, /Os k(s,T, :IZT)dT) }(.s)ds.

(Pa.c)(t) = T(e) / T e 9O ot - T(B)6 - 00, 6))

Then we have

b
- g(b, xp) — / AT(b — 8)g(s, xs)ds
0

/ObT(b_s)f <,>;L/O k(s,T,xT)d'r)](s)ds.

and from the compactness of T'(¢}, we obtain V. (t) = {(Pz,fm')(t) (€ BK} is

relatively compact in X for every 0 < ¢ < . Moreover, for every z € Bk, we
have

(P} t) — (Paca) ()
< [ e+ arfign + Mor. (s 1 1)
+ MoLy (K +1) + %bﬁcl,ﬁLl(K +1)

4 BMLy(K°2 + (bLgK)ﬁ)} (s)ds.

Therefore, there are relatively compact sets arbitrarily close to the set V{t).
Hence the set V(¢) is also relatively compaet in X. Thus by Arzela-Ascoli’s
theorem, P» is compact operator. By this time, we show that P = P, 4+ P is
a condensing map on By, and by the fixed point of Sadovskii, there exists a
fixed point x(-) for P on By. Therefore, we can see that the nonlocal Cauchy

problem (1.1) has a mild solution with xg = ¢ and z(b) = z'. a
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