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SOLUTION OF RICCATI TYPES MATRIX DIFFERENTIAL
EQUATIONS USING MATRIX DIFFERENTIAL TRANSFORM
METHOD

REZA ABAZARI

ABSTRACT. In this work, we successfully extended dimensional differential
transform method (DTM), by presenting and proving some new theorems,
to solve the non-linear matrix differential Riccati equations(first and second
kind of Riccati matrix differential equations). This technique provides a
sequence of matrix functions which converges to the exact solution of the
problem. Examples show that the method is effective.
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1. Introduction

Consider the first kind time-varying matrix differential Riccati equations(1-
MDREs)

X'(t) = An(t) + An(t) X (t) — X () A1 (1) — X () A1) X (B), (1)
X(to) = X(),

where A]l(t) S Rnxn,Agg(t) S Rmxm,Alz(t) S Rnxm,Agl(t) € Rmxn,X(t> &

R™*™ and second kind time-varying matrix differential Riccati equations(2-
MDREs)

[X(t) + B(t)] X'(t) = Ba1(t) + Boo(t) X (t) — X(¢)B11(t) — X(¢)B12(t) X (t), @)
X(to) = X(),

where Bll(t) S Ran’ Bgz(t) S Rnxn’ Blg(t) S Rnxn7 Bgl(t) € Rnxn,X(t) S
R™™ and B(t) € R"*™,

MDRESs play a fundamental role in control theory, for example, optimal con-
trol 1], filtering and estimation, decoupling Boundary values problems [2,3], and
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order reduction, etc. In the past a number of unconventional numerical meth-
ods that are suited only for time-invariant MDREs have been designed, but
despite their special structure, no unconventional methods that are suited for
time-varying MDRESs have been constructed, except (carefully) re-designed con-
ventional linear multistep methods and Runge-Kutta methods. Implicit con-
ventional methods which are preferred to explicit ones for stiff systems require
solving nonlinear systems of equations (of possibly much higher dimensions than
the original problem itself for Runge-Kutta methods) which not only pose im-
plementation difficulties but also may be expensive because they require solving
non-linear matrix equations which may be costly.

Many authors studied Eq.(1) and similar of these equation, by different nu-
merical method, such as L. Dieci, et al.[2], Kenney, et, al.[4], Chiu, et, al. [5,6].
In [7,8], the Cubic Matrix Splines method employed to approximate the solution
of special case of Matrix differential equation.

The differential transform method is a semi-numerical-analytic-technique that
formalizes the Taylor series in a totally different manner. It was first intro-
duced by Zhou in a study about electrical circuits [9]. The differential transform
method obtains an analytical solution in the form of a polynomial. It is different
from the traditional high order Taylors series method, which requires symbolic
competition of the necessary derivatives of the data functions. The Taylor series
method is computationally taken long time for large orders. With this method,
it is possible to obtain highly accurate results or exact solutions for linear and
nonlinear matrix differential equations. It is possible to solve system of dif-
ferential equations [10], differential-algebraic equations[11], partial differential
equations[12], fractional differential equations|[13], pantograph equations[14],
integro-differential equations [15] by using this method.

The purpose of this research is to extended the differential transformation
method(DTM) to obtained the solution of Egs. (1) and (2).

2. Basic definitions

The basic definitions of matrix differential transformation are introduced as
follows:

Definition 1. If u(t) € R™*™ can be expressed by Taylor’s series about fixed
point ¢;, then u(t) can be represented as

W) (¢,
ut) = > ®

k!
k=0

If un(t) is be the n-partial sums of a Taylor’s series (2), then

P u® (e,

AR

un(t) =3 —k!(ll(t — )5 4 Ra(t). (4)
k=0

where uy,(t) is called the n-th Taylor polynomial for u(t) about ¢; and R, (t) is

remainder term.
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If U(k) is defined as

1
Uk) = |
then Eq (3) reduce to

dk

Wu(t)] , where k=0,1,..,00 (5)

t=t;

ZU )t —t;) (6)

and the n-partial sums of a Taylor s series (6) reduce to

ZU (t —t)* + Ry (t). (7)

The U(k) defined in Eq (5), is called the matrix differential transform of matrix
function u(t). For simplicity assume that tq = 0, then solution (6) reduce to

n
u(t) =Y UK + Ry (). ®)
k=0

From the above definitions, it can be found that the concept of the one - dimen-
sional matrix differential transform is derived from the Taylor series expansion.
Now we state the fundamental theorem of this paper. Assume that the ma-
trixes W(k), U(k), and V(k), in R"*™, are the differential transform versions of

the matrix functions w(t), u(t), and v(t), in R™*", respectively, then we have:

Theorem 1. If w(t) = ciu(t) & cov(t), where c1,c2 € R, then
W(k) = cU(k) £ 2V (k).

Theorem 2. If w(t) = g;,i—,u(t), then W (k) = WU(k +m).

Proof. From definition 1, we get

dF dF rdm dFtm
0 = g | )] = o)
Therefore

dk qktm
—_— = _— pum— '
| o) = L) ., = (ke m)U(k +m),
then from (5), we have W (k) = (k+m)' Ulk + m). O

Remark 1. In this paper, the natation ® is applied to denoted the multiplicative
notation of differential transform version of matrixes functions.

Theorem 3. If w(t) = u(t)u(t), then W (k) = S5 o UV (k —1).

Proof. By using the Lienitis formula, we get

d¥ d* Eork\ dbo o dR
Reh = 2 [u(t)v(t)] - ; (z) Zrult) Zeu(t).
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Therefore

[wie] _, =3 (5) - pwiovee-o,

=0

then from (5), we have

k
W(k) =Uk)y®V(k)=> ULV

N

Remark 2. Matrix multiplication is a noncommutative operation, i.e. it is
possible for u(t)v(t) # v(t)u(t), even when both products exist and have the

same shape. Therefor for w(t) = v(t)u(t), we have W (k) = Zl o VIOU(k-1).

Theorem 4. If w(t) = d—lu(t)jt—";v(t), then

k
-yl ”m ‘)””) U+ m)V(k— 1 +n).
=0

Proof. Analogously to previous Theorems, we get

dr df rd™ dm k k\ gt qntk—!
—rw(t) = o [dt—mu(t)ﬁv(t)] - ; <z> e ut) T (0):
Therefore [Ww(t)] =300 (%) C+m) ik — 1+ U+ m)V (k-1 +n).

Then from (5), we have W(k) = Ef:() WU(Z +m)V(k—1+n). O

Remark 3. From Remark. 2, if w(t) = dit",%v(t) 4 u(t), then

k

W (k) = lZHm __l)l'+n)!V(l+m)U(kl+n).

Theorem 5. Assume that W(k),U(k,) and V(k), are the differential transform
version of matriz functions w(t), u(t), and v(t), respectively, then

(4) Ifw(t) = ()%v(t) then W (k) = "o CGEgtr UV (k — 1+ n).
(B) Ifw(t) = fwu(t)o(t), then W (k) = Spg LU (1 +m)V (k —1).

Proof. 1t is obvious from Theorem 4. Il

3. Convergence analysis

In this section, we show that the presented matrix differential transformation
method is convergence.
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Theorem 6. (Matriz form of Taylor series) Let the matriz functionu : R™*™ —
R and its first n derived functions be relatively continuous and finite on an
interval T and differentiable on T — Q, (Q countable). Let to,t € T. Then
formulas (5) and (6) hold, with

Ro(z) = % /t L) (@ — 1y, )
@l < EZOE a0, (10

where ||.||oo is infinity matriz norm.

Proof. By definition 1, we get
n k
(.T - t())
R, (z) = u(z) —ulte) — Zu(k)(to)—k! .
k=1

We use the right side as a pattern to define a function h : R™*™ — R™*™. This
time, we keep z fixed (say, ¢ = a € T) and replace tg by a variable {. Thus we
set

h(t) = u(a) — u(t) - ull(,t) (a—1t)—...— “(2,“) (a—t)", tcR (11)

Then h(ty) = Rp(a) and h(a) = 0. Our assumptions imply that h is relatively
continuous and finite on T', and differentiable on T — ). Differentiating (15), we
see that all cancels out except for one term

u(n+1) (t)

W) = - n!

(a—t)", teT—Q. (12)
then we get
a (n+l) t
~h(t) = / Y e, teT
+ n!
and

/a M(a —1)"dt = —h(a) + h(to) = Rn(a), teT.

to n!
As z = a, (14) is proved. Next, let M = ||u®+D(t)|| 0, If M = +oo, the (14) is
n41 S pyntl
valid. If M < 400, define g(t) = M%%—;—— for t > a, and g(t) = fM%
for t < a. In both cases,
|t —al
n!

g(t) =M Z [ Dlloe, teT—Q

—to|"!
then we get, |A(to) = h(a)llso < llg(to) — (@)oo, oF [[Ru(a)ll < MG,
Thus (14) follows, because a is arbitrary value.

4. Applications and numerical results
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Example 1. Consider the 2 x 2 matrix differential Riccati equations (1):

X'(t) = A21(t) + A ()X () — X (1) A (t) — X (1) A1 (1) X (t),
X(0) - H i (13)

where A21(t):[ %t _if(tt(fj)zzt }’Alz(t):[ é 62 }A”(t‘):[ e(: ? }7

A22(t)[ o e }

By applying matrix differential transform method on Eq.(13), for k = 0,1, 2,
.., N, we get

(k+1)X(k +1) = Az (k) + Azz(k) @ X(k) — X(k) ® Api (k)
—X(k) ® Aga(k) @ X(k),

X(O)~{é H

where X{k), Az (k), Aga(k), A1 (k) and Ajo(k) are the matrix differential trans-
formation of X(t), Ax(t), Aaa(t), A1y (t) and Ay,(t), respectively.

By using the differential transform operator listed on Theorems. 1-5, we can
rewrite Eq. (14) in to

(14)

x<k+1>-(k+1>{An<k>~le@Anu X (k=1)~ i X()Aw (k1)
(15)
~ ko (Sio XA - r)) (k-1},

From matrix functions A(t), B(t) and C(t), and using the concept of differential
transformation operator, we get

& 2 1 3 i 2 1, : 2.
A21(t)~ZA21(k')t { 0 o }4{ o 1 t—i—}: PR L ;;‘ T4,
k=0
- 0 ) [0 o
_ k_ 1 2 3
A12(t) —ZAH(’V)t - !i 0 1 :l+[ 0 1 :, t+[ 0 % 1+ 0 % J t + ..
k=0 .

o
OO

o 1 E r
An(t) = Ay (k)tF = Lo b0 s 00y o
0 O 0o 1 0 0

k=0

and

© 7 r
0 10 0 0
Az (t) = E Agy (k)tk = { 0 g JJ{ 0 o }H—[ 8 O ey o o }t?’%-,..,

—_
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From Egs. (15), and by taking N = 3, the following system for k = 0,1, 2, 3, is
obtained:
X(1) = A21(0) + Az2(0)X(0) — X(0)A11(0) — X(0)A12(0)X(0) = [ 8 »}1 ] ,
X(2) = £ A21 (1) + $ A2 (1)X(0) + L A2 (0)X(1) — 1X(1)A1,(0) - $X(0)An (1)
0 1
g =
X(3) = £ A21(2) + A2 (2)X(0) + $ A (1)X(1) + $A22(0)X(2) — 3X(2)A11(0)
—FX(DA11 (L) — $X(0)A11(2) ~ 2X(0)A12(0)X(2) — $X(0)A12(1)X(1)
1
—EX(DAL(0)X(1) — $X(0)A12(2)X(0) = [ 8 N (16)
X{4) = $A21(3) + £ A2 (3)X(0) + 2A22(2)X(1) + 1 A0 (1)X(2) + £ A22(0)X(3)
—AX(3JAL (D) - 1X(2)A L (1)~ 1 X (DAL (2) - 1K(DYA1:1(3) — $K(0) Asz (0)X(3)
~4X(0)A12(1)X(2) - $X(1)A12(0)X(2) - X (0) A12(2) X (1) — $X(1)A2(1)X(1)
1

—1X(0)A12(3)X(0) = [ 0

>

LX) Arz (1X(0) — X(0)A12(0)X(1) = [

b= 2]

214
0 5

i

By substituted of X(:) obtained from list {(16) in (5), we get

IR 0 1 o 1 9 g L 3 0 L 4
o[8[ el L 4 ]2 4]
Similarly, utilizing the recurrence relations in Eq.(15), X (k) are obtained for

k= 0,1,2,..., N and then, by using the inverse transformation rule in Eq.(5),
the closed form of solution can be obtained

. 1 e
‘X(t) - l: 0 8~t } .
which is exactly the same as the exact solution.

Example 2. Consider the 3 X 2 matrix differential Riccati equations {1):
X'(t) = A (t) + Axa() X (1) — X () Ar2() X (1),

0 -1
X)) =1 -1 1|, (17
0 1
where
0 —t7 4t 4312 o -1 o t 0 0
Ax(t) =1 —2 42t —thet +2¢t +1 ,Am(t):[ % 0 0 ],Am(t}: ¢ 0 11,
t—1 —tt et g -1 0

Similar on previous Example, by applying matrix differential transform method
on BEq.(17), for k= 0,1,2,..., N, we get
(k+ DX(k+1) = An(k) + Asa(k) @ X(k) — X(k) ® Asa(k) @ X(k)},
0 -1
X(0)=| -1 1 (18)
0 1
where X(k), Aa1(k), Azz2(k) and Aj2(k) are the differential transform version of
X (1), An(t), A22(t), and A;j4(¢), respectively.
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From Egs.(18), and by taking N = 3, we get

0 0
X(1) = A21(0) + A2(0)X(0) — X(0)A12(0)X(0) = | 1 1 |,
0 0
X(2)=2A01(1)+3A22(0)X (1) + L A22(1)X(0) ~ X (0) A12(0)X(1) — $X(0) A12(1)X(0)
0 o0
= 0 %
0 0
X(3) = $A21(2) + $A22(0)X(2) + $A22(1)X(1) + $A22(2)X(0) — $X(0)A12(0)X(2)
0 0 (19)
—2X(0)A12(1)X(1) — :X(1)A1(0)X(1) — :X(0)A;(2)X(0)={ 0 L |,
0 0

X(4) =12 A21(3)+ 3 Axa(0) X(3) + 1 Ana(1)X(2) + L A2 (2) X(1) + £ A22(3) X(0)
T —3X(0)A12(0)X(3) — $X(2)X(0)A12(1) — X (2) X (1) A12(0) — $ X(1)X(0) A12(2)

0 0
—IXMALL)X(Q) - {X(0)AL@)XO0) = | 0 & |,
0 0

By substituted of X(:) obtained from list (19) in (5), we get

0 -1 0 0 0 0 0 0 0 0
Xt)=] -1 1 |+]|1 t+] 0o L1240 L0 & [t

0 1 0 0 0 0 0 0 0 0
Similarly, utilizing the recurrence relations in Eq. (18), X(k) are obtained for

k =0,1,2,..., N and then, by using the inverse transformation rule in Eq.(5),
the closed form of solution can be obtained

0 -1
X@t)=|t—1 ¢
0 1

which is exactly the same as the exact solution.

Example 3. Consider the following time-varying second kind matrix differential
Riccati equations:

X(1)X' (1)
X(0) = [

Ct) + AW X(t) + X (1) B(t)X (1),
0 (20)
1

O»—l”

—te?t et 1 2te=t —te 2 ted* 0
O I U R e REORS B o
Similar on previous Examples, the matrix differential transform version of Eq.
(20), for k =0,1,2,..., N, is

X(k) @ X'(k) = C(k) + A(k) ® X(k) + X(k) ® B(k) @ X(k),

X(0) = { N (21)
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where X(k), A(k),B(k) and C(k) are the differential transform of X (¢}, A(t),
B(t) and C(t), respectively, we can rewrite Eq.(21) in to

Seolk =L+ DXOX(k ~1+1) = Clk) — Lo ADX(k ~ 1)

_ 22
Xk [ XA ] X1~ o 2
by taking N = 3, the following system for k£ = 0, 1,2, 3, is obtained:
X(0)X(1) - A(0)X(0) — X(0)B(0)X(0) — C(0) = Ogx2,
X(1)2 + 2X(0)X(2) — A(1)X(0) — A(0)X(1) — [X(1)B(0) + X(0)B(1)]X(0)
“X(0)B(0)X(1) ~C(1) = 02x2,
3X(2)X(1) + 3X(0)X(3) ~ A(2)X(0) — A(1)X(1) — A(0)X(2) — [X(2)B(0)
X (1)B(1)+X(0)B(2) | X(0) — [X(1)B(0)+X(0)B(1)| X (1) - X (0)B(0)X(2)
~C(2) = a2, (23)

4 X(3) X(1) + 2 X(2)? + 4 X(0) X(4) — A(3) X(0) — A(2)X(1) — A(1)X(2)
—A(0)X(3) ~ [X(3)B(0) + X(2)B(1) + X(1)B(2) + X (0)B(3) | X(0)
—[X(2)B(0) + X()B(1) + X(0)B(2)| X(1) — [X(1)B(0) + X(0)B(1)] X(2)
=X(0)B(0)X(3) — C(3) = O2x2,

Solving the above system and using the inverse transformation rule (5}, we get
the following series solution

o [10 01 20202 01555 01
)&(t)w\:o ]}%{0 2]“”{0 2]t+ d % (A 0 % e,
Similarly, utilizing the recurrence relations in Eq.(22), X(k) are obtained for

k =0,1,2,...,N and then, by using the inverse transformation rule in Eq.(),
the closed form of solution can be obtained

t
e t
X (t) = [ 0 th :l ‘
which is exactly the same as the exact solution.

Example 4. In the end example, consider the following time-varying second
kind matrix differential Riccati equations:

[S(6) + X(O)] X'(t) = D(t) + A()X () — X (1) B(t) + X(H)C(H)X (L),

X(0) = [ _?1 (1) . @4
where

Alt) = [ G‘I L }  B(t) [ ﬁ:f e } .C(t) —»[
and M
[ 34 2et —2te!  t— €% }

. 1 £t
~1+t* 24 2€ ’b(t){te‘ t32t2}
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Similar on previous Examples, by applying matrix differential transform method
on Eq.(24), for k=0,1,2,..., N, we get
[S(k)+X(k)|®X'(k)=D(k)+A(k)@X (k) - X (k)®B(k)+X (k) ® C(k) 0 X(k),
0 1
-1 0’
where X (%), A(k), B(k), C(k), D(k) and S(k) are the differential transform ver-
sion of X (t), A(t), B(¢),C(t), D(t) and S(t), respectively.
By using the differential transform operator listed on Theorems. (1)-(5), we
can rewrite Eq. (25) in to
Yokl D[SO+XW]X (k-1 )=D(h) =3 Lg AOXK=1) o)
3o X(Bk — 1) = 3070 [ 30,20 X(r)C(l — r)]|X(k — 1) = O2xa2,
From Eq.(26), and by taking N = 3, the following system for k = 0,1,2,3, is
obtained:
[S(0) + X(0)]X(1) — A(0)X(0) + X(0)B(0) — X(0)C(0)X(0) = 022,

X(0) = [ (25)

[S(1) +X(1)]X(1) + 2[8(0) + X(0)] X(2) — A(1)X(0) - A(0)X(1)+X(1)B(0)
+X(0)B(1) — [X(1)C(0) + X(0)C(1)]X(0) — X(0)C(0)X(1) = O,

[S(2) + X(2)]X(1) + 2[S(1) + X(1)]X(2) + 3[S(0) + X(0)] X(3) — A(2)X(0)

—A(1)X(1) — A(0) X(2) + X(2) B(0) + X (1) B(1) + X(0) B(2) — [ X(2) C(0)

+X(1)C(1)+ X(0)C(2)|X(0) — [X(1)C(0) + X(0)C(1)] X (1) — X(0)C(0)X(2) (27)
= 02x2,

[S(3)+X(3)]X(1)+2[S(2)+X(2)]X(2) +3[S(1)+X (1)] X (3) +4[S(0) + X(0)| X (4)

—A(3)X(0) = A(2)X(1) ~A(1)X(2) — A(0)X(3) +X(3)B(0)+X(2)B(1)

X (1)B(2)+X(0)B(3) - [X(3)C(0) +X(2)C(1)+X(1)C(2) +X(0)C(3)]X(0)

—[X(2)C(0)+X(1)C(1)+X(0)C(2) | X (1) — [X(1)C(0) + X(0)C(1)] X(2)

—X(0)C(0)X(3) = O2x2,

Solving the above system and using the inverse transformation rule (5), we get
the following series solution

[ o 1 1 1 0 2 1.2,]0 275,00 51,4
X(z:)_[;1 0}+[1 _1}t+[0 O}t+[0 L I R

Similarly, utilizing the recurrence relations in Eq. (26), X(k) are obtained for
k=0,1,2,..., N and then, by using the inverse transformation rule in Eq.(5),

the closed form of solution can be obtained

X(t)[tfl i].

which is exactly the same as the exact solution.
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