Abstract
This research is for early extraction and utilization of semantic information from the tags in tagged Web image retrieval. Generally, users attach a tag to a Web image with little thought of the order, up to over 100 ones. In this paper, we suggest a method of selecting prior tags based on their importance when tagged images are uploaded, and using them in image retrieval. Ideas came from the recognition of the important tags which give a better description of the image as the tags sharing more semantic information with other tags of the same image. This method includes calculation of relation scores between tags based on WordNet and multilevel search of tagged images with the scores. For evaluation, we compared the suggested method and other retrieval methods searching images with simple matching of tags to a given keyword. As the results, we found the superiority of our method in precision and recall rate.
본 연구는 태깅된 웹 이미지의 검색에서 태그들의 의미정보를 미리 추출하여 검색 시에 이용하고자 하는 것이다. 일반적으로 웹 이미지의 태그들은 사용자들에 의해 순서 구분 없이 무작위로 매겨지며 많게는 그 수가 100여개에 이른다. 본 논문에서는 이 태그들 간에 의미정보가 많이 공유된 것일수록 해당 이미지를 설명하는 중요 태그가 될 것임에 착안하여 이미지와 태그 정보가 업 로드되는 시점에 중요도에 따른 우선 태그를 결정하고 이를 검색에 활용하는 방법을 소개한다 제안된 방법은 워드넷에 기반하여 태그의 연관성점수를 계산하고 이를 이용하여 다단계 검색으로 태징된 웹 이미지를 검색한다. 평가를 위하여 제안된 방법으로 검색된 결과와 검색어와 태그의 단순 비교방식인 기존의 검색을 비교하였으며 실험 결과, 정확도와 재현율에서 본 시스템의 우수함을 확인할 수 있었다.