DOI QR코드

DOI QR Code

A Study on a Statistical Analysis of the Feature Information for the Dynamic Signature Verification

동적 서명의 특징 정보에 대한 통계적 분석에 관한 연구

  • 김진환 (연세대학교 컴퓨터공학과) ;
  • 조재현 (부산가톨릭대학교 컴퓨터공학과)
  • Published : 2009.08.31

Abstract

This paper is a research on the feature information using direction information and adjusting constant w for the dynamic signature verification. We could improved processing time and reduce signature database without the increase of error rate. We could confirmed these results by using statistical method T-test.

본 논문에서는 서명에서 생성되는 속도 성분(방향 정보, 거리 정보)에서 방향 정보만을 특징 정보로 서명DB에서 저장하고 거리(속력) 정보는 조정상수(w)를 이용함으로써 오류율에 영향을 주지 않으면서 처리속도를 개선하고, 특징 정보 크기도 줄일 수 있었다. 이를 위해 통계적 검정 T-test를 이용하여 확인하였다.

Keywords

References

  1. G. Dimauro, S. Impedovo, G. Pirlo, "Component- riented algorithms for signature verification", IJPRAI, Vol.8, No.3, pp. 771-794, 1994 https://doi.org/10.1142/S0218001494000401
  2. G.Dimauro, S.Impedovo, G.Pirlo, "A stroke-oriented approach to signature verification", in From Pixels to Features III - Frontiers in Handwriting Recognition, S. Impedovo and J.C.Simon eds., Elsevier Publ., pp.371-384, 1992
  3. Hansheng Lei, Srinivas Palla, Venu Govindaraju, "ER2: An Intuitive Similarity Measure for On-Line Signature Verification", Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR'04), pp.191-195, October 2004
  4. Sascha Schimke, Claus Vielhauer, Jana Dittmann, "Using Adapted Levenshtein Distance for On-Line Signature Authentication", Pattern Recognition, 17th International Conference on (ICPR'04) Volume 2, pp.931-934, August 2004
  5. M. E. Munich, P. Perona, "Continuous Dynamic Time Warping for Translation Invariant Curve Alignment with Applications to Signature Verification", (1999), Available http://citeseer.nj.nec.com/munich99continuous.htm
  6. M. Perizeau and R. Plamondon, "A comparative analysis of regional correlation, dynamic time warping and skeletal tree matching for signature verification", IEEE T-PAMI, Vol.12, No.7, pp.710-717, 1990 https://doi.org/10.1109/34.56215
  7. C. Quek, R.W. Zhou, "Antiforgery: a novel pseudo-outer product based fuzzy neural network driver signature verification system", Pattern Recognition, Vol.23, pp.1795-1816, 2002 https://doi.org/10.1016/S0167-8655(02)00153-8
  8. D. Letjman and S. George , "On-line handwritten signature verification using wavelets and back-propagation neural networks", Proc. of ICDAR '01, Seattle, pp.596-598, 2001
  9. M. Fuentes, S. Garci-Salicetti, B. Dorizzi, "On line Signature Verification: Fusion of a Hidden Markov Model and a Neural Network via a Support Machine", Proc. of IWFHR-8, Canada, pp.253-258, 2002
  10. Marc Fuentes, Sonia Garcia-Salicetti, Bernadette Dorizzi, "On-Line Signature Verification: Fusion of a Hidden Markov Model and a Neural Network via a Support Vector Machine", Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR'02), pp.253, August 2002
  11. Mohammad M. Shafiei, Hamid R. Rabiee, "A New On-Line Signature Verification Algorithm Using Variable Length Segmentation and Hidden Markov Models", Seventh International Conference on Document Analysis and Recognition Volume I, pp.443, August 2003 https://doi.org/10.1109/ICDAR.2003.1227706
  12. H. S. Yoon, J. Y. Lee, H. S. Yang, "An On-Line Signature Verification System Using Hidden Markov Model in Polar Space", Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR'02), pp.329, August 2002
  13. 김진환, 조혁규, 차의영, "고성능 동적 서명인증시스템 구현", 한국해양정보통신학회 논문지 제9권 4호, 2005.7