DOI QR코드

DOI QR Code

Prochlornz와 fludioxonil 혼용침지소독에 의한 벼 키다리병 방제

Control of Bakanae Disease of Rice by Seed Soaking into the Mixed Solution of Procholraz and Fludioxnil

  • 박우식 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 최효원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 한성숙 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 신동범 (국립식량과학원 작물환경과) ;
  • 심형권 (국립식량과학원 바이오에너지작물센터) ;
  • 정은선 (국립종자원 재배시험과) ;
  • 이세원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 임춘근 (강원대학교 농업생명과학대학 응용생물공학과) ;
  • 이용환 (농촌진흥청 국립농업과학원 농업미생물과)
  • Park, Woo-Sik (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Choi, Hyo-Won (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Han, Seong-Suk (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Shin, Dong-Beum (Crop Environment Research Division, National Institute of Crop Science, RDA) ;
  • Shim, Hyeong-Kwon (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Jung, En-Seon (Variety Testing Division, Korea Seed & Variety Service) ;
  • Lee, Se-Weon (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Lim, Chun-Keun (Division of Bio-Resources Technology, College of Agriculture and Life Science, Kangwon National University) ;
  • Lee, Yong-Hwan (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
  • 발행 : 2009.08.01

초록

본 연구에서는 키다리병에 심하게 감염된 종자를 prochlornz EC와 fludioxonil FS을 혼용하여 종자소독 효과를 증진시키기 위해 혼용처리 시 병원균 균사 및 포자 억제효과를 분석하고 혼용조건을 설정 하였다. 균사생장 억제 검정에서는 단제 사용 시 prochloraz는 $10{\mu}g$/ml 처리에서 100% 억제한 반면 fludioxonil은 $80{\mu}g$/ml 처리에서 33.3%의 억제율을 나타내었고, 두 가지 살균제의 혼용 시 각각 $5{\mu}g$/ml씩 혼용처리에서 100% 억제하였다. 포자발아 억제 검정의 경우 prochloraz $40{\mu}g$/ml 단독 처리에서 81.4% 발아를 억제하였지만 prochloraz와 fludioxonil 각각 $10{\mu}g$/ml 혼용처리에서는 99.2%의 억제율을 보였다. 감염종자를 대상으로 혼용침지소독 시 prochloraz $125{\mu}l$/ml와 fludioxonil $50{\mu}l$/ml 혼용 침지할 경우 발병율이 2.1%로 높은 방제 효과를 보이고 입모율에는 영향을 미치지 않았지만 prochloraz 농도가 높아질수록 입모율이 낮아지는 경향이 있었다. 침지시간이 길고 온도가 높을수록 키다리병 방제효과가 증진된 반면 $35^{\circ}C$ 이상에서는 입모율이 80% 내외로 낮아지는 경향을 보였는데 관행방법인 prochloraz $125{\mu}l$/ml 단독으로 $30^{\circ}C$에서 48시간침지 시 57.6%의 방제가를 나타낸 반면 prochloraz $125{\mu}l$/ml와 fludioxonil $50{\mu}l$/ml를 혼용하여 $30^{\circ}C$에서 48시간 첨지할 경우 방제가 96.7%, 입모율 88.0%로 키다리병 방제에 효과적이면서 식물체에 안정적인 방제효과를 나타내었다.

These experiments were conducted to improve the effect of seed disinfection on rice seed severely infected Bakanae disease by seed soaking into mixed solution of prochloraz EC and fludioxonil FS. We investigated the effects of various concentrations of two fungicides mixed solution on spore germination and mycelial growth of Fusarium fujikuroi. Mycelial growth was inhibited 100% at $10{\mu}g$/ml of prochloraz and 33.3% at $80{\mu}g$/ml of fludioxonil. Spore germination was inhibited 81.4% at $40{\mu}g$/ml of prochloraz. Interestingly, mixed solution of $5{\mu}g$/ml or $10{\mu}g$/ml of each fungicide inhibitied 100% of mycelial growoth and 99.2% of spore germination, respectively. Severely infected rice seeds soaked into mixed solution composed of $125{\mu}l$/ml of prochloraz and $50{\mu}l$/ml of fludioxonil showed 2.1% of disease symptoms compared to 20.4% of prochloraz $125{\mu}l$/ml, but higher concentrations of prochloraz decreased the seedling stand rate. When the seed soaking time was longer and temperature was higher, control effect on Bakanae disease was improved, but seedling stand was lower about 80% over $35^{\circ}C$.

키워드

참고문헌

  1. Furuta, T. 1970. Problems on the infection and control of rice bakanaε disεase. Plant Prot. Japan. 24: 141-144
  2. Han, S. 2007. Review of disease occurrence of major or crops in Korea in 2007. Proceedings of Annual Falling Mleeting & Symposium of KSPP 19-20
  3. Hayasaka, T., Ueno, K. and Ishguro, K. 2002. Seed disinfection using hot water immersion to contro1 severa1 seed-bome diseases of rice plants. Bulletin of the Yamagata Prefectural Exp. Stn. 36: 67-78
  4. Ito, S. and Kimura, J. 1931. Studies on Bakanae disease of the rice plant. Hokkaido. Agri. Exp. Stn. 27: 1-95
  5. 김장규. 1981. 벼 키다리벼의 발생생태에 관한 연구. 한국식물보호학회지 20:146-150
  6. Lourdes I. V Amaral, Angeio L. Cortelazzo, Marcos S. Buckeridge, Luiz A. R. Pereira and Maria F. D. A. Pereira 2009. Anatomical and biochεmical changes in the composition of developing seεd coats of annatto (Bixaorellana L.). Trees 23: 287-293 https://doi.org/10.1007/s00468-008-0276-x
  7. 명인식, 박경석, 홍성기, 박진우, 심홍식, 이영기, 이상엽, 이승돈, 이수헌, 최홍수, 최효원, 허성기, 신동범, 나동수, 예완해, 조원대. 2005. 2004년 주요 농작물 병해 발생개황. 식물병연구 11:89-92 https://doi.org/10.5423/RPD.2005.11.2.089
  8. 오용비, 임상수, 심이성. 1983. 상자육묘 시 키다리병효과 구명시험. 작물시험장 시험연구보고서(수도편). pp.299-303
  9. 박홍규, 신해룡, 이인, 김석언, 권오도, 박인진, 국용인. 2003 벼 종자소독 시 수온, 처리시간 및 약량이 벼 키다리병 발병에 미치는 영향. 한국농약과학회지 7:216-222
  10. 박우식, 예완해, 이세원, 한성숙, 이준성, 임춘근, 이용환. 2008. 온탕소독과 prochloraz 침지소독이 벼 종자에 감염된 Fusarium fujikuroi의 포자와 균사의 형태에 미치는 영향에 대한 전자현미경적 연구. 식물병연구 14:176-181 https://doi.org/10.5423/RPD.2008.14.3.176
  11. 신명욱, 이수민, 이용환, 강효중, 김흥태. 2008. 몇 가지 살균제의 벼 키다리병과 병원균에 대한 효과 검정. 농약과학회지 12:168-176
  12. Suzuki, M., Hamamura, H. and Iwamori, M. 1994. Relationship between fonnulations of triflumizole and their efficacy to Bakanae disease in rice seed treatment. J Pesticide Sci. 19: 251-256 https://doi.org/10.1584/jpestics.19.4_251
  13. Tomlin, C. D. S. 2006. A world compendium the pesticide manual. BCPC, Hampshire. 1349 pp
  14. Umehara, Y. 1975. Infection of 'Bakanae' disease of rice plant. Proc. Assoc. Pl. Prot. Hokuriku 23: 11-13
  15. Werbrouck, S. P.O., Dhuyvetter, H., Perez, R. M., Topoonyanont N. and Debergh, P. C. 2000. Plant Propagation In vitro: Honnonal Interactions. Acta Hart. (ISHS) 560: 377-381

피인용 문헌

  1. Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice vol.61, pp.1, 2016, https://doi.org/10.7740/kjcs.2016.61.1.009
  2. Large-scale screening of rice accessions to evaluate resistance to bakanae disease vol.80, pp.5, 2014, https://doi.org/10.1007/s10327-014-0528-0
  3. Mapping of qBK1, a major QTL for bakanae disease resistance in rice vol.35, pp.2, 2015, https://doi.org/10.1007/s11032-015-0281-x
  4. Monitoring for the Resistance to Prochloraz of Fusarium Species Causing Bakanae Disease in Korea vol.43, pp.2, 2015, https://doi.org/10.4489/KJM.2015.43.2.112
  5. Resistance of Fusarium fujikuroi Isolates to Hydrogen Peroxide and Its Application for Fungal Isolation vol.21, pp.3, 2015, https://doi.org/10.5423/RPD.2015.21.3.227
  6. Use of Sodium Hypochlorite for the Control of Bakanae Disease in Rice vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.259
  7. Detecting fludioxonil residues in brown rice and rice straw using gas chromatography-nitrogen phosphorus detector vol.58, pp.2, 2015, https://doi.org/10.1007/s13765-015-0040-z
  8. Development and Validation of a TaqMan Real-Time PCR Assay for the Specific Detection and Quantification of Fusarium fujikuroi in Rice Plants and Seeds vol.107, pp.7, 2017, https://doi.org/10.1094/PHYTO-10-16-0371-R
  9. Identification of bakanae disease resistance loci in japonica rice through genome wide association study vol.10, pp.1, 2017, https://doi.org/10.1186/s12284-017-0168-z
  10. Development of In Vitro Seedling Screening Method for Selection of Resistant Rice Against Bakanae Disease vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.288
  11. Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007 vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.OA.10.2015.0218
  12. Molecular mapping of qBK1WD, a major QTL for bakanae disease resistance in rice vol.11, pp.1, 2018, https://doi.org/10.1186/s12284-017-0197-7