DOI QR코드

DOI QR Code

방사선 조사 후 흰 쥐의 폐에서 염증성 Cytokine의 발현 양상

Biphasic Increase of Pro-inflammatory Cytokines in Mice Lung after Irradiation

  • 최윤정 (한국원자력의학원 내과) ;
  • 노진경 (한국원자력의학원 내과) ;
  • 장원석 (한국원자력의학원 실험병리학연구실) ;
  • 이선주 (한국원자력의학원 실험병리학연구실) ;
  • 이승숙 (한국원자력의학원 실험병리학연구실) ;
  • 고재수 (한국원자력의학원 실험병리학연구실) ;
  • 김재열 (중앙대학교 의과대학 내과학교실) ;
  • 김혜련 (한국원자력의학원 내과) ;
  • 김철현 (한국원자력의학원 내과) ;
  • 이재철 (한국원자력의학원 내과)
  • Choi, Yun Jung (Department of Internal Medicine, Korea Cancer Center Hospital) ;
  • Rho, Jing Kyung (Department of Internal Medicine, Korea Cancer Center Hospital) ;
  • Jang, Won Seok (Department of Laboratory of Pathology, Korea Cancer Center Hospital) ;
  • Lee, Seon Joo (Department of Laboratory of Pathology, Korea Cancer Center Hospital) ;
  • Lee, Seung Sook (Department of Laboratory of Pathology, Korea Cancer Center Hospital) ;
  • Koh, Jae Soo (Department of Laboratory of Pathology, Korea Cancer Center Hospital) ;
  • Kim, Jae Yeol (Department of Internal Medicine, College of Medicine, Chung-Ang University) ;
  • Kim, Hye-Ryoun (Department of Internal Medicine, Korea Cancer Center Hospital) ;
  • Kim, Cheol Hyeon (Department of Internal Medicine, Korea Cancer Center Hospital) ;
  • Lee, Jae Cheol (Department of Internal Medicine, Korea Cancer Center Hospital)
  • 투고 : 2009.06.04
  • 심사 : 2009.07.07
  • 발행 : 2009.07.30

초록

연구배경: 방사선치료 효율의 증가와 방사선 피폭 환자의 치료에 있어 방사선으로 인한 폐 손상의 기전을 잘 파악하는 것이 무엇보다 중요한 일이다. 최근 염증성 cytokine의 활성화가 초기 방사선 폐렴뿐만 아니라 후기에 생기는 폐 섬유화에도 기여하고 있다는 보고들이 많이 나오고 있다. 저자들은 염증성 cytokine의 역할을 알아보기 위하여 방사선 후 흰 쥐의 폐와 혈청에서 이들의 변화를 관찰하였다. 방 법: 90마리의 흰 쥐 폐에 20 Gy의 방사선을 조사한 후 정해진 시간에 폐를 적출하여 병리학적 소견을 관찰하였다. 동시에 혈청과 lung homogenate에서 ELISA kit를 이용하여 염증성 cytokine의 변화를 조사하였다. 결 과: 방사선 조사 후 조직에서 염증세포의 침윤이 증가하고 시간이 지남에 따라 폐 섬유화가 생기는 것을 확인할 수 있었다. TNF-$\alpha$와 IL-1$\beta$는 4시간과 3주째 lung homogenate에서 증가하였는데 3주째 더 많이 증가하는 양상을 보여 주었다. 하지만 혈청에서의 변화는 뚜렷하지 않았다. MIP-2의 경우에는 4시간에 lung homogenate에서만 증가한 반면 HMGB1은 3주째 혈청에서만 증가하는 것을 알 수 있었다. 결 론: 방사선 조사 후 TNF-$\alpha$와 IL-1$\beta$ 등의 염증성 cytokine들이 biphasic expression하는 것을 보여 주었다. 후기 염증성 cytokine들의 증가를 효과적으로 억제할 수 있는 방법이 모색되어야 할 것으로 생각되고 이는 폐 섬유화로 진행하는 만성 합병증을 예방하는 데 기여할 것으로 판단된다.

Background: The pathophysiologic mechanisms of radiation-induced lung injury should be elucidated to enhance the therapeutic efficacy of radiotherapy and to manage patients exposed to serious radiation by accident. It has been suggested that pro-inflammatory cytokines play an important role in radiation-induced effect on the lung. This study was aimed to investigate changes in pro-inflammatory cytokines such as TNF-$\alpha$, MIP-2, IL-1$\beta$ and HMGB1, a newly recognized inflammatory mediator. Methods: The chests of BALB/c mice were selectively irradiated with single fraction of 20 Gy and then sacrificed at indicated times. Pathologic changes in the lung were examined after H&E staining. The expression level of pro-inflammatory cytokines was evaluated by ELISA kits in lung homogenate and in serum. Results: Radiation induced inflammatory changes and mild fibrosis in lung. Biphasic increase of TNF-$\alpha$ and IL-1$\beta$ was found in lung homogenate at 4 hours and at 3 weeks after radiation. The elevation in the second phase tended to be more intense. However, there was no similar change in serum. MIP-2 level was slightly increased in lung homogenate at 4 hours, but not at 3 weeks. HMGB1 was increased at 3 weeks in serum while there was no significant change in lung homogenate. Conclusion: Radiation induced a biphasic increase in TNF-$\alpha$ and IL-1$\beta$. The effective control of second phase cytokine elevation should contribute to preventing severe lung fibrosis caused by radiation.

키워드

참고문헌

  1. Lee CB, Stinchcombe TE, Rosenman JG, Socinski MA. Therapeutic advances in local-regional therapy for stage III non-small-cell lung cancer: evolving role of dose-escalated conformal (3-dimensional) radiation therapy. Clin Lung Cancer 2006;8:195-202 https://doi.org/10.3816/CLC.2006.n.047
  2. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33:99-109 https://doi.org/10.1016/0360-3016(95)00095-G
  3. Rübe CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, et al. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 2000;47:1033-42 https://doi.org/10.1016/S0360-3016(00)00482-X
  4. Rübe CE, Uthe D, Wilfert F, Ludwig D, Yang K, Konig J, et al. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation. Int J Radiat Oncol Biol Phys 2005;61:1482-92 https://doi.org/10.1016/j.ijrobp.2004.12.072
  5. Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 2001;26:152-3
  6. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999;285:248-51 https://doi.org/10.1126/science.285.5425.248
  7. Einck L, Bustin M. The intracellular distribution and function of the high mobility group chromosomal proteins. Exp Cell Res 1985;156:295-310 https://doi.org/10.1016/0014-4827(85)90539-7
  8. Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989;243:1056-9 https://doi.org/10.1126/science.2922595
  9. Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 1992;69:185-95 https://doi.org/10.1016/0092-8674(92)90129-Z
  10. Rubin P, Casarett GW. Respiratory system: radiopathologic basis of the clinical course. In: Rubin P, Casarett GW, editors. Clinical radiation pathology. Philadelphia: Sanders; 1968. p. 423-70
  11. Travis EL, Harley RA, Fenn JO, Klobukowski CJ, Hargrove HB. Pathologic changes in the lung following single and multi-fraction irradiation. Int J Radiat Oncol Biol Phys 1977;2:475-90 https://doi.org/10.1016/0360-3016(77)90159-6
  12. Fowler JF, Travis EL. The radiation pneumonitis syndrome in half-body radiation therapy. Int J Radiat Oncol Biol Phys 1978;4:1111-3 https://doi.org/10.1016/0360-3016(78)90029-9
  13. Franko AJ, Sharplin J, Ghahary A, Barcellos-Hoff MH. Immunohistochemical localization of transforming growth factor beta and tumor necrosis factor alpha in the lungs of fibrosis-prone and 'non-fibrosing' mice during the latent period and early phase after irradiation. Radiat Res 1997;147:245-56 https://doi.org/10.2307/3579426
  14. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation Proc Natl Acad Sci USA 1989;86:10104-7 https://doi.org/10.1073/pnas.86.24.10104
  15. Rubin P, Finkelstein J, Shapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 1992;24:93-101
  16. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990;265:621-36
  17. Johnston CJ, Piedboeuf B, Rubin P, Williams JP, Baggs R, Finkelstein JN. Early and persistent alterations in the expression of interleukin-1 alpha, interleukin-1 beta and tumor necrosis factor alpha mRNA levels in fibrosis-resistant and sensitive mice after thoracic irradiation. Radiat Res 1996;145:762-7 https://doi.org/10.2307/3579368
  18. Johnston CJ, Wright TW, Rubin P, Finkelstein JN. Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and -sensitive mice after thoracic irradiation. Exp Lung Res 1998;24:321-37 https://doi.org/10.3109/01902149809041538
  19. Rube CE, Wilfert F, Palm J, Konig J, Burdak-Rothkamm S, Liu L, et al. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther Onkol 2004;180:442-8 https://doi.org/10.1007/s00066-004-1265-7
  20. Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 2006;17:189-201 https://doi.org/10.1016/j.cytogfr.2006.01.003
  21. Zeh HJ 3rd, Lotze MT. Addicted to death: invasive cancer and the immune response to unscheduled cell death. J Immunother 2005;28:1-9 https://doi.org/10.1097/00002371-200501000-00001
  22. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, et al. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 2007;13:2836-48 https://doi.org/10.1158/1078-0432.CCR-06-1953