References
- 권현한, 문영일(2005) 상태-공간 모형과 Nearest Neighbor 방법을 통한 수문시계열 예측에 관한 연구. 대한토목학회논문집, 대한토목학회, 제25권, 제4B호, pp. 275-283.
- 김응석, 김형수, 김재형, 김중훈(1999) 낮은 정밀도에 의한 일강우자료의 카오스적 예측 가능성. 대한토목학회논문집, 대한토목학회, 제19권, 제II-4호, pp. 435-443.
- 김형수, 윤용남(1996a) 카오스의 위상학적 견지: (I) 일유량 자료계열 해석에 응용. 대한토목학회논문집, 대한토목학회, 제16권, 제II-5호, pp. 445-452.
- 김형수, 윤용남(1996b) 카오스의 위상학적 견지: (II) 독립성과 잡음저감. 대한토목학회논문집, 대한토목학회, 제16권, 제II-5호, pp. 453-459.
- 김형수, 최시중, 김중훈(1998) DVS 알고리즘을 이용한 일 유량자료의 예측. 대한토목학회논문집, 대한토목학회, 제18권, 제II-6호, pp. 563-570.
- 김형수, 강두선, 김종우, 김중훈(1998) BDS 통계: 수문자료에의 응용. 한국수자원학회논문집, 한국수자원학회, 제31권, 제6호, pp. 769-777.
- 김형수, 안재현, 윤용남, 박무종(1999) 엘니뇨/남방진동지수의 비선형성 검출. 대한토목학회논문집, 대한토목학회, 제19권, 제II-2호, pp. 149-157.
- 박대규, 조원철(2003) 카오스 특성을 갖는 일유출량 자료의 비선형성 예측. 대한토목학회논문집, 대한토목학회, 제23권, 제6B호, pp. 479-487.
- 이재수(1994) 물수지 방정식의 카오스적 분석. 한국수자원학회지, 한국수자원학회, 제27권, 제3호, pp. 45-45.
- Box, G.E.P. and Jenkins, G.M. (1976) Time series analysis: Forecasting and control. Revised edition, Holden-Day, San Francisco.
- Brock, W.A., Heish, D.A., and Lebaron, B. (1991) Nonlinear dynamics, chaos, and instability: Statiscal theory and economic evidence. The MIT Press, Massachusetts(USA).
- Brock, W.A., Dechert W.D., Scheinkman, J.A., and Lebaron, B. (1996) A test for independence based on the correlation dimension. Econometric Reviews, Vol 15, No. 3, pp. 197-235. https://doi.org/10.1080/07474939608800353
- Casdagli, M. (1992) Chaos and deterministic versus stochastic non-linear modeling, Journal of the Royal Statistical Society. Vol. 54, No. 2, pp. 303-324.
- Casdagli, M. and Weigend, A. (1994) Exploring the Continuum Between Deterministic and Stochastic Modelling, in: Time series prediction: forecasting the future and understanding the past. edited by: Weigend, A. and Gershenfeld, SFI Studies in the Sciences of Complexity, Proc. Vol. XV, Addison-Wesley, pp. 993.
- Graf, K.E. and Elbert, T. (1990) Dimensional analysis of the waking EEG, in chaos in Brain Function. edited by E.Basar, Spinger-Verlag, New York, N.Y, pp. 135-152.
- Grassberger, P. and Procaccia, I. (1983) Measuring the strageness of strange attractors. Physica D: Nonlinear Phenomena, Vol. 9, No. 11, pp. 189-208. https://doi.org/10.1016/0167-2789(83)90298-1
- Holzfuss, J. and Mayer-Kress, G. (1986) An approach to error-estimation in the application of dimension algorithms, in Dimensions and Entropies in Chaotic Systems, edited by G. Mayer-Kress, Springer-Verlag, New York, pp. 114-147.
- Jeong, G.D. and Rao, A.R. (1996) Chaos characteristics of tree ring series, Journal of Hydrology., ASCE, Vol. 182, Issue. 1-4, pp. 239-257. https://doi.org/10.1016/0022-1694(95)02942-7
- Kim, H.S. (1997) Applicability of chaotic system in hydrologic time series, Ph.D. dissertation, Colorado State Univ., Fort Collins, Colorado.
- Kim, H.S., Eykholt, R., and Salas, J.D. (1998) Delay time window and plateau onset of the correlation dimension for small data sets, Physical Review E., Vol. 58, No. 5, pp. 5676-5682. https://doi.org/10.1103/PhysRevE.58.5676
- Kim, H.S., Kang, D.S., and Kim, J.H. (2003) The BDS statistic and residual test. Stoch. Environ. Res. Risk Assess., Vol. 17, No. 1-2, pp. 104-115. https://doi.org/10.1007/s00477-002-0118-0
- Kim, H.S., Yoon, Y.N., Kim, J.H., and Kim, J.H. (2001) Searching for strange attractor in wastewater flow. Stochastic Environmental Research and Risk Assessment, Vol. 15, No. 5, pp. 399-413. https://doi.org/10.1007/s004770100078
- Kim, H.S., Sivakumar, B., and Lee, E.T. (2008) Measuring nonlinear dependence in hydrologic time series. Stochastic Environmental Research and Risk Assessment, in Press
- Packard, N.H., Curtchfield, J.P., Farmer, J.D., and Shaw, R.S. (1980) Geometry from a Time Series. Physical Review Letters, Vol. 45, Issue 9, pp. 712-716. https://doi.org/10.1103/PhysRevLett.45.712
- Porporato, A. and Ridolfi, L. (1997) Nonlinear analysis of river flow time sequences. Water Resources. Research., Vol. 33, Issue. 6, pp. 234-247.
- Rodriguez-Iturbe, I., Entekhabi, D., and Brass, R.L. (1991) Nonlinear dynamics of soil moisture at climate scales, 1. Stochastic analysis. Water resources Research, Vol. 27, No. 8, pp. 1899-1906. https://doi.org/10.1029/91WR01035
- Rodriguez-Iturbe, I., Power, B.F.D., Sharifi, M.B., and Georgakakos, K.P. (1989) Chaos in rainfall. Water resources Research, Vol. 25, No. 7, pp. 1667-1675. https://doi.org/10.1029/WR025i007p01667
- Salas, J.D., Delleur, J.W., Yevjevich, V., and Lane, W.L. (1980) Applied modelling of hydrologic time series, Water Resources Publications, Littleton, Colorado.
- Sangoyomi, T. (1993) Climate variability and dynamics of Great Salt Lake hydrology, PhD dissertation, Utah State Univ., Logan.
- Sangoyomi, T., Lall. and Abarbanel, H.D.I. (l996) Nonlinear dynamics of the Great Salt Lake: dimension estimation, Water Resources Research. Vo1. 32, No. 1. pp. 149-159. https://doi.org/10.1029/95WR02872
- Takens, F. (1981) Detecting strange attractors in turbulence, In Dynamical systems and turbulence, D.A. Rand and L.S. Young, eds., Lecture Notes in Mathematics, Vol. 898, pp. 336-381.
- Tsonis, A.A. and Elsner, J.B. (1988) The weather attractor over very short time scales. Nature, Vol. 333, pp. 545-547. https://doi.org/10.1038/333545a0
- Wilcox, B.P., Seyfried, M.S., and Matison, T.H. (1991) Searching for Chaotic Dynamics in Snow melt Runoff. Water resources Research. Vol. 27, No. 6, pp. 1005-1010. https://doi.org/10.1029/91WR00225