DOI QR코드

DOI QR Code

사질토의 미소변형 전단탄성계수에 대한 고결영향 분석

Analysis of Cementation Effect on Small Strain Shear Modulus of Sand

  • 이문주 (고려대학교 공과대학 건축사회환경공학과) ;
  • 추현욱 (전 고려대학교 공과대학 건축사회환경공학과) ;
  • 최성근 ((주)나오지오컨설턴트) ;
  • 이우진 (고려대학교 공과대학 건축사회환경공학과)
  • 투고 : 2008.12.22
  • 심사 : 2009.02.16
  • 발행 : 2009.03.31

초록

본 연구에서는 챔버에 조성된 미고결, 고결모래에 대한 벤더엘리먼트 시험으로부터 사질토 미소변형 전단탄성계수인 $G_{max}$를 평가하였다. 시험결과, 본 연구에서 사용된 파쇄모래의 $G_{max}$는 기존의 연구에 사용된 자연상태 모래의 $G_{max}$보다 35~50% 작게 평가되었으나, 고결모래의 $G_{max}$는 이전 연구 결과보다 크게 평가되었다. 모래의 $G_{max}$는 고결유발제로 사용된 석고의 함유율에 가장 큰 영향을 받았으며, 석고함유율에 따라 지수적으로 증가하였다. 상대밀도의 증가는 미고결 모래보다 고결모래의 $G_{max}$ 증가에 더 큰 영향을 미치는 것으로 관찰되었으며, 유효연직응력의 증가는 고결모래의 $G_{max}$보다 미고결 모래의 $G_{max}$ 증가에 더 큰 영향을 미쳤다. 이와 같은 영향요인 분석을 바탕으로 고결모래의 $G_{max}$를 간극비, 유효연직구속압 뿐만 아니라 석고함유율에 따른 함수로 표현하였다.

In this study, the small strain shear moduli ($G_{max}$) of uncemented and gypsum-cemented sands are evaluated by performing a series of bender element tests on the specimens reconstituted in the calibration chamber. It is observed from the experimental results that $G_{max}$ of crushed-sands is about 35~50% smaller than that of natural sands. The increase in gypsum content is observed to result in an exponential increase of $G_{max}$ value. It is also shown that the relative density has more significant effect on $G_{max}$ of cemented sand, whereas the vertical effective stress has more significant influence on $G_{max}$ of uncemented one. A prediction equation for cemented sand is expressed as a function of gypsum content as well as void ratio and vertical effective stress.

키워드

참고문헌

  1. 이문주, 최성근, 추현욱, 조용순, 이우진(2008) 낙사법으로 조성된 대형 석고 고결시료의 균질성, 한국지반공학회논문집, 한국지반공학회, Vol. 24, No. 1, pp. 91-99.
  2. Abdulla, A.A. and Kiousis, P.D. (1997) Behavior of cemented sands - I. Testing. International Journal for Numerical and Analytical Methods in Geomechnics, Vol. 21, No. 8, pp. 533-547. https://doi.org/10.1002/(SICI)1096-9853(199708)21:8<533::AID-NAG889>3.0.CO;2-0
  3. Acar, Y.B. and El-Tahir, E.A. (1986) Low strain dynamic properties of artificially cemented sand. Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 11, pp. 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
  4. Altun, S. and Goktepe, A.B. (2006) Depedence of dynamic shear modulus of uniform sands on stress level and density. Civil Engineering and Environmental Systems, Vol. 23, No. 2, pp. 101-116. https://doi.org/10.1080/10286600600743372
  5. Baig, S., Picornell, M., and Nazarian, S. (1997) Low strain shear moduli of cemented sands. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp. 540-545. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(540)
  6. Chang, T.S. and Woods, R.D. (1992) Effect of particle contact bond on shear modulus. Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 8, pp. 1216-1233. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1216)
  7. Chiang, Y.C. and Chae, Y.S. (1972) Dynamic Properties of Cement Treated Soils, Highway Research Record 379, Highway Research Board, National Academy of Science, Washingto, D. C., pp. 39-51.
  8. Choi, S.K. (2008) Estimation of stress history of sands using CPT and DMT, Ph.D. thesis, Korea University.
  9. Dyvik, R. and Madshus, C. (1985) Lab measurements of $G_{max}$ using bender element, Proceeding, ASCE Conventionon Advances in the Art of Testing Soils under Cyclic Condition, pp. 186-196.
  10. Fernandez, A.Z. (2000) Tomographic imaging the state of stress, Ph.D. thesis, Civil Engineering, Georgia Institute of Technology, Atlanta.
  11. Fernandez, A.Z. and Santamarina, J.C. (2001) Effect of cementation on the small-strain parameters of sands. Canadian Geo-technical Journal, Vol. 38, pp. 191-199. https://doi.org/10.1139/cgj-38-1-191
  12. Hardin, B.O. and Drnevich, V.P. (1972) Shear modulus and damping in soils: design equations and curves. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 98, pp. 667-692.
  13. Hardin, B.O. and Richart, F.E. (1963) Elastic wave velocities in granular soils. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 89, pp. 603-624.
  14. Ismail, M.A., Joer, H.A, Sim, W.H., and Randolph, M.F. (2002) Effect of cement type on shear behavior of cemented calcareous soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 6, pp. 520-529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  15. Iwasaki, T. and Tatsuoka, F. (1977) Effect of grain size and grading on dynamic shear moduli of sands. Soils and Foundation, Vol. 17, No. 3, pp. 19-35. https://doi.org/10.3208/sandf1972.17.3_19
  16. Iwasaki, T., Tatsuoka, F., and Takagi, Y. (1978) Shear moduli of sands under cyclic torsional shear loading. Soils and Foundations, Vol. 18, No. 1, pp. 39-56. https://doi.org/10.3208/sandf1972.18.39
  17. Kim, T.J. (2005) Dissipation of porewater pressure due to piezocone penetration in OC clay, Ph.D. dissertation, Korea University.
  18. Lee, J.S. (2003) High resolusion geophysical techniques for small-scale model testing. Ph.D. thesis, Civil Engineering, Georgia Institute of Technology, Atlanta.
  19. Lee, J.S. and Santamarina, J.C. (2005) Bender elements: Performance and signal interpretation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  20. Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Cavallaro, A., and Pedroni, S. (1997) Shear modulus and damping of soils. Geotechnique, Vol. 47, No. 3, pp. 603-617. https://doi.org/10.1680/geot.1997.47.3.603
  21. Mohsin, A.K.M. and Airey, D.W. (2005) Influence of cementation and density on Gmaxforsand, International Conferenceon Soil Mechanics and Foundation Engineering(ICSMFE), Tokyo, Japan, pp. 413-416.
  22. Puppala, A.J., Acar, Y.B., and Tumay, M.T. (1995) Cone penetration in very weakely cemented sand. Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 8, pp. 589-600. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  23. Rad, N.S. and Tumay, M.T. (1986) Effect of cementation on the cone penetration resistance of sand, Use of In Situ Tests in Geotechnical Engineering, GSP 6, ASCE, New York, pp. 926-948.
  24. Roesler, S.K. (1979) Anisotropic shear modulus due to stress anisotropy, Journal of Geotechnical Engineering, ASCE, Vol. 105, No. 7, pp. 871-880.
  25. Santamarina, J.C., Klein, K.A., and Fam, M.A. (2001) Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley and Sons, NewYork.
  26. Saxena, S., Avramidis, A.S., and Reddy, K.R. (1988) Dynamic moduli and damping ratio for cemented sands at low strains. Canadian Geotechnical Journal, Vol. 25, pp. 353-368. https://doi.org/10.1139/t88-036
  27. Schnaid, F., Prietto, P.D.M., and Consoli, N.C. (2001) Characterization of cemented sand in triaxial compression. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 857-868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  28. Stokoe, K.H., Lee, S.H.H., and Knox, D.P. (1985) Shear Moduli Measurements Under True Tri-Axial Stresses, Proceedings of Advancesin the Art of Testing Soils under Cyclic Conditions, ASCE, NewYork, pp. 166-185.
  29. Sweeney, B.P. and Clough, G.W. (1990) Design of a large calibration chamber, Geotechnical Testing Journal, ASTM, Vol. 13, No. 1, pp. 36-44. https://doi.org/10.1520/GTJ10144J
  30. Viggiani, G. and Atkinson, J.H. (1995) Interpretation of bender element tests, Geotechnique, Vol. 45, No. 1, pp. 149-154. https://doi.org/10.1680/geot.1995.45.1.149
  31. Yun, T.S. and Santamarina, J.C. (2005) Decementation, softening, and collapse: changes in small-strain shear stiffness in $K_0$ loading, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 3, pp. 350-358. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350)