DOI QR코드

DOI QR Code

Numerical Analysis of Runup and Wave Force Acting on Coastal Revetment and Onshore Structure due to Tsunami

해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석

  • 이광호 ((일)나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 김창훈 ((일)나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 김도삼 (한국해양대학교 건설환경공학부) ;
  • ;
  • 황용태 (한국해양대학교 대학원 건설환경공학부)
  • Received : 2008.12.01
  • Accepted : 2009.02.17
  • Published : 2009.05.31

Abstract

In this work, wave run-up heights and resultant wave forces on a vertical revetment due to tsunami (solitary wave) are investigated numerically using a numerical wave tank model called CADMAS-SURF (CDIT, 2001. Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.), which is based on a 2-D Navier-Stokes solver, coupled to a volume of fluid (VOF) method. The third order approximate solution (Fenton, 1972. A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No.2, pp.257-271) is used to generate solitary waves and implemented in original CADMAS-SURF code. Numerical results of the wave profiles and forces are in good agreements with available experimental data. Using the numerical results, the regression curves determined from the least-square analysis are proposed, which can be used to determine the maximum wave run-up height and force on a vertical revetment due to tsunami. In addition, the capability of CADMAS-SURF is demonstrated for tsunami wave forces acting on an onshore structure using various configuration computations including the variations of the crown heights of the vertical wall and the position of the onshore structure. Based on the numerical results such as water level, velocity field and wave force, the direct effects of tsunami on an onshore structure are discussed.

본 연구에서는 Navier-Stokes방정식과 자유수면추적을 위해 도입한 VOF함수의 이류방정식에 기초하고 있는 CADMAS-SURF(CDIT, 2001)에 Fenton(1972)의 3차근사고립파이론에 의한 조파이론을 새롭게 도입한 수치파동수로로부터 직립호안상에서 지진해일(고립파)의 처오름 및 작용파력을 해석한다. 기존의 연구결과와 대비하여 본 수치해석결과의 적용성을 논의하며, 최소자승법에 기초하여 직립호안상에서 최대처오름과 최대파력을 합리적으로 추정할 수 있는 회귀식을 제안한다. 또한, 육상구조물에 작용하는 지진해일(tsunami wave)의 파력산정에 CADMAS-SURF(CDIT, 2001)의 적용을 시도한다. 육상에서 지진해일의 수위변동, 유속 및 파력변동의 특성으로부터 육상구조물에 미치는 지진해일의 직접적인 영향을 추론할 수 있을것이다.

Keywords

References

  1. Arikawa, T., Yamada, F., and Akiyama, M. (2005) Study of the applicability of tsunami wave force in a three-dimensional numerical wave flume. Ann. J. of Coastal Engrg., JSCE, Vol. 52, pp. 46-50. https://doi.org/10.2208/proce1989.52.46
  2. ASCE (2006) Minimum design loads for buildings and other structures. ASCE/SEI Standard 7-05, ASCE.
  3. Asakura, R., Iwase, K., Ikeya, T., Takao, M., Kaneto, T., Fujii, N., and Omori, M. (2000) An experimental study on wave force acting on on-shore structures due to overflowing tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 911-915. https://doi.org/10.2208/proce1989.47.911
  4. Boussinesq, M.J. (1872) Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. of Math. Pure Appl., Vol. 17, No. 2, pp. 55-108.
  5. Byatt-Smith, J.C.B. (1971) An integral equation for unsteady surface waves and a comment on the Boussinesq equation. J. of Fluid Mech., Vol. 49, pp. 625-633. https://doi.org/10.1017/S0022112071002295
  6. CCH (2000) Department of Planning and Permitting of Honolulu Hawaii. Chapter 16, Article 11, Hawaii, USA.
  7. CDIT (2001) Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.
  8. Cross, R.H. (1967) Tsunami surge forces. J. of the Waterways and Harbours Division, ASCE, Vol. 93, No. WW4, pp. 201-231.
  9. Cumberbatch, E. (1960) The impact of a water wedge on a wall. J. of Fluid Mech., Vol. 7, No. 3, pp. 353-373. https://doi.org/10.1017/S002211206000013X
  10. Dames and Moore (1980) Design and Construction Standards for Residential Construction in Tsunami-prone Areas in Hawaii. FEMA, USA.
  11. FEMA-CCM (2005) Coastal Construction Manual. FEMA 55 Report, Edition 3, FEMA, USA.
  12. Fenton, J. (1972) A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No. 2, pp. 257-271. https://doi.org/10.1017/S002211207200014X
  13. Fenton, J.D. and Reinecker, M.M. (1982) A Fourier method for solving nonlinear water-wave problems : Application to solitarywave interactions. J. of Fluid Mech., Vol. 118, pp. 441-443.
  14. Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y. (1963) Hydraulic study on tsunami. Coastal Engrg. in Japan, Vol. 6, pp. 67-82.
  15. Grilli, S. and Svendsen, A. (1991) The runup and reflection of solitary waves on steep slopes. Report No. CACR091-03, Center for Applied Coastal Research, University of Delaware, Newark, USA.
  16. Hamzah, M.A., Mase, H., and Takayama, T. (1998) Direct simulation of solitary wave runup and pressure on coastal barrier. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 176-180. https://doi.org/10.2208/proce1989.45.176
  17. Hirt, C.W and Nichols, B.D. (1981) Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  18. Ikeno, M. and Tanaka, H. (2003) Experimental study on impulse force of drift body and tsunami runing up to land. Proc. of Coastal Engrg., JSCE, Vol. 50, pp. 721-725. https://doi.org/10.2208/proce1989.50.721
  19. Ikeno, M., Matsuyama, M., and Tanaka, H. (1998) Shoaling soliton fission of tsunami on a shelf and wave pressure for tsunamiresistant design of breakwater by large wave flume-experiments. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 366-370. https://doi.org/10.2208/proce1989.45.366
  20. Ikeno, M., Mori, N., and Tanaka, H. (2001) Experimental study on tsunami force and impulsive force by a drifter under breaking bore like tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 48, pp. 846-850. https://doi.org/10.2208/proce1989.48.846
  21. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., and Buchner, B. (2005) A Volume-of-Fluid based simulation method for wave impact problems. J. of Comput. Phys., Vol. 206, pp. 363-393. https://doi.org/10.1016/j.jcp.2004.12.007
  22. Matsutomi, H. (1989) Impulsive force due to the collision of a bore with a floating body. Proc. of Coastal Engrg., JSCE, Vol. 36, pp. 574-578. https://doi.org/10.2208/proce1989.36.574
  23. Matsutomi, H. (1991) An experimental study on pressure and total force due to bore. Proc. of Coastal Engrg., JSCE, Vol. 38, pp. 626-630. https://doi.org/10.2208/proce1989.38.626
  24. Maiti, S. and Sen, D. (1999) Computation of solitary waves during propagation and runup on a slope. Ocean Engrg., Vol. 26, pp. 1063-1083. https://doi.org/10.1016/S0029-8018(98)00060-2
  25. Matsutomi, H. and Ohmukai, T. (1999) Laboratory experiments on fluid force of tsunami flooded flows. Proc. of Coastal Engrg., JSCE, Vol. 46, pp. 336-340. https://doi.org/10.2208/proce1989.46.336
  26. Mizutani, S. and Imamura, F. (2000) Hydraulic ecperimental study on wave force of a bore acting on a structure. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 946-950. https://doi.org/10.2208/proce1989.47.946
  27. Mizutani, S. and Imamura, F. (2002) Design of coastal structure including the impact and overflow on tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 49, pp. 731-735. https://doi.org/10.2208/proce1989.49.731
  28. Maxworthy, T. (1976) Experiments on the collisions between solitary waves. J. of Fluid Mech., Vol. 76, pp. 177-185. https://doi.org/10.1017/S0022112076003194
  29. Nakamura, T. (2008) Sand foundation instability due to wave-seabed- structure dynamics interaction. Ph.D. Thesis, Nagoya University, Nagoya, Japan
  30. Ramsden, J.D. (1993) Tsunami : Forces on a vertical wall caused by long waves, bores, and surges on a dry bed. Ph.D. Thesis, California Institute of Technology, California, USA.
  31. Ramsden, J.D. (1996) Forces on a vertical wall due to long waves, bores, and dry-bed surges. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 122, No. 3, pp. 134-141. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:3(134)
  32. Ramsden, J.D. and Raichlen, F. (1990) Forces on vertical wall caused by incident bores, J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 116, No. 5, pp. 592-613. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:5(592)
  33. Sakakiyama and Kajima (1992) Numerical simulation of nonlinear wave interacting with permeable breakwaters. Proc. of 23th Int. Conf. on Coastal Engrg., ASCE, pp. 1517-1530.
  34. Su, C.H. and Mirie, R.M. (1980) On head-on collisions between two solitary waves, J. of Fluid Mech., Vol. 98, No. 3, pp. 509-525. https://doi.org/10.1017/S0022112080000262
  35. Tanimoto, K., Takayama, T., Murakami, K., Murata, S., tsuruya, H., takahashi, S., Morikawa, M., Yoshimoto, Y., Nakano, S., and Hiraishi, T. (1983) Field and laboratory investigations of the tsunami caused by 1983 Nihonkai chubu earthquake. Technical note, PARI, Japan, No. 470, pp. 299.
  36. Tanimoto, K., Tsuruya, H., and Nakano, S. (1984) Experimental study of tsunami force and investigation of the cause of sea wall damages during 1983 Nihonkai chubu earthquake. Proc. of 31th Japanese Conf. on Coastal Engrg., JSCE, pp. 257-261.
  37. Xiao, H. and Huang, W. (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Engrg., Vol. 35, pp. 106-116. https://doi.org/10.1016/j.oceaneng.2007.07.009
  38. Yeh, H. (2006) Maximum fluid forces in the tsunami runup zone. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 132, No. 6, pp. 496-500. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)
  39. Yeh, H. (2007) Design tsunami forces for onshore structures. J. of Disaster Research, Vol. 2, No. 6, pp. 1-6.
  40. Yeom, G.S., Mizutani, N., shiraishi, K., Usami, A., Miyajima, S., and Tomita, T. (2007) Study on behavior of drifting containers due to tsunami and collision forces. Proc. of Coastal Engrg., JSCE, Vol. 54, pp. 851-855. https://doi.org/10.2208/proce1989.54.851