DOI QR코드

DOI QR Code

교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones

  • 강형식 (한국건설기술원 하천.해안항만연구실) ;
  • 김규호 (한국건설기술원 하천.해안항만연구실) ;
  • 임동균 (한국건설기술원 하천.해안항만연구실)
  • 투고 : 2009.01.05
  • 심사 : 2009.04.10
  • 발행 : 2009.05.31

초록

본 연구에서는 흐름방향으로 식생 영역이 교차적으로 식재된 교행식생 수로에서의 3차원 수치모의를 수행하였다. 지배방정식에서의 난류 폐합을 위해 ${\kappa}-{\varepsilon}$ 모형을 적용하였으며, 수치모형은 Olsen(2004)이 개발한 3차원 모형을 이용하였다. 먼저, 3차원 수치모형을 이용하여 하상의 일부가 식재된 부분 식생 수로를 수치모의 하고, 계산된 적분유속 및 레이놀즈응력을 기존의 실험 결과와 비교하였다. 그 결과 본 모형이 식생 수로에서의 평균 유속 분포를 매우 잘 예측하는 것으로 나타났다. 그러나 ${\kappa}-{\varepsilon}$ 모형이 등방성 모형이므로 식생과 비식생 영역의 경계면 부근에서 발생되는 운동량 교환 효과를 정확히 예측할 수 없는 것으로 나타났다. 한편, 주흐름방향으로 식생 영역이 교차적으로 존재하는 교행식생 수로를 수치모의 하고, 계산된 유속 분포를 기존의 실험 결과와 비교한 결과, 계산 유속과 실험 결과가 매우 잘 일치하는 것으로 나타났다. 또한 다양한 밀도에 따른 유속 벡터도를 계산한 결과, 식생밀도가 증가함에 따라 식생이 흐름 방향을 변화 시켜 점차 만곡수로와 유사한 형태의 유속 벡터도를 갖는 것으로 나타났으며, 식생 밀도 ${\alpha}$가 9.97%인 경우에는 식생 반대 측벽 영역에서 재순환 흐름이 형성되는 것으로 나타났다. 한편, 식생 밀도에 따른 단면 유속 분포도 및 편수위 변화를 살펴보았다.

In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

키워드

참고문헌

  1. 강형식, 최성욱(2005) 식생된 개수로 흐름에서의 난류의 비등방성, 한국수자원학회논문집, 한국수자원학회, 제38권 제10호, pp. 871-883. https://doi.org/10.3741/JKWRA.2005.38.10.871
  2. 강형식, 최성욱(2006) 식생된 개수로에서 항력가중계수가 흐름에 미치는 영향 분석, 대한토목학회논문집, 대한토목학회, 제26권 제5B호, pp. 529-537.
  3. 강형식, 최성욱(2007) 전단면 식생된 개수로 흐름에서 주흐름방향 와(渦) 구조의 수치모의, 대한토목학회논문집, 대한토목학회, 제27권 제3B호, pp. 289-299.
  4. 김태범, 최성욱, 전웅현(2007) 식생항력을 고려한 2차원 수심적분 유한요소모형 개발, 대한토목학회 학술발표회 논문집, 대한토목학회, pp. 1337-1340.
  5. 최성욱, 강형식(2007) 수심적분 모형을 이용한 침수식생 수로의 흐름 및 유사이동 모의, 대한토목학회논문집, 대한토목학회, 제27권 제6B호, pp. 621-629.
  6. Ackerman, J.D. and Okubo, A. (1993) Reduced mixing in a marine macrophyte canopy, Functional Ecology, Vol. 7, pp. 305-309. https://doi.org/10.2307/2390209
  7. Bennett, S.J., Prrim, T., and Barkdoll, B.D. (2002) Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel, Geomorphology, Vol. 44, pp. 115-126. https://doi.org/10.1016/S0169-555X(01)00148-9
  8. Choi, S.-U. and Kang, H. (2004) Reynolds stress modeling of vegetated open-channel flows, Journal of Hydraulic Research, IAHR, Vol. 42, No. 1, pp. 3-11. https://doi.org/10.1080/00221686.2004.9641178
  9. Choi, S.-U. and Kang, H. (2006) Numerical investigations of mean flow and turbulence structures of partly vegetated open channel flows using the Reynolds stress model, Journal of Hydraulic Research, IAHR, Vol. 44, No. 2, pp. 203-217. https://doi.org/10.1080/00221686.2006.9521676
  10. Cui, J. and Neary, V. (2008) LES study of turbulent flows with submerged vegetation, Journal of Hydraulic Research, IAHR, Vol. 46, No. 3, pp. 307-316. https://doi.org/10.3826/jhr.2008.3129
  11. Dunn, C.J. (1996) Experimental determination of drag coefficients in open channel with simulated vegetation, M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
  12. Fischer-Antze, T., Stoesser, T., Bates, P., and Olsen, N.R.B. (2001) 3D numerical modeling of open-channel flow with submerged vegetation, Journal of Hydraulic Engineering, IAHR, Vol. 39, No. 3, pp. 303-310. https://doi.org/10.1080/00221680109499833
  13. Ghisalberti, M. and Nepf, H.M. (2002) Mixing layers and coherent structures in vegetated aquatic flows, Journal of Geophysical Research, AGU, Vol. 107(C2), pp. 3-1-3-11.
  14. Ghisalberti, M. and Nepf, H.M. (2005) Mass transport in vegetated shear flows, Environmental Fluid Mechanics, Vol. 5, pp. 527-551. https://doi.org/10.1007/s10652-005-0419-1
  15. Ikeda, S. and Kanazawa, M. (1996) Three dimensional organized vortices above flexible water plants, Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 11, pp. 634-640. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(634)
  16. Kanda, M. and Hino, M. (1994) Organized structures in developing turbulent flow within and above a plant canopy using a large eddy simulation, Boundary Layer Meteorology, Vol. 68, pp. 237-257. https://doi.org/10.1007/BF00705599
  17. Kang, H. and Choi, S.-U. (2006) Turbulence modeling of compound open-channel flows with and without vegetation on the floodplain using the Reynolds stress model, Advances in Water Resources, Vol. 29, No. 11, pp. 1650-1664. https://doi.org/10.1016/j.advwatres.2005.12.004
  18. Kang, H. and Choi, S.-U. (2008) Turbulence modeling of solute transport in open channel flows over submerged vegetation, IAHR-APD, Beijing, China.
  19. Launder, B.E. and Spalding, D.B. (1974) The numerical computation of turbulent flow, Comput. Methods Appl. Mech. Eng., Vol. 3, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  20. Lopez, F. and Garcia, M. (2001) Mean flow and turbulence structure of open-channel flow through non-emergent vegetation, Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 5, pp. 392-402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  21. Melaaen, M.C. (1992) Calculation of fluid flows with staggered and nonstaggered curvilinear nonorthogonal grids- the theory, Numerical Heat Transfer, Part B, Vol. 21, pp. 1-19. https://doi.org/10.1080/10407789208944862
  22. Naot, D. and Rodi, W. (1982) Calculation of secondary currents in channel flows, Journal of the Hydraulic Division, ASCE, Vol. 108(HY8), pp. 948-968.
  23. Naot, D., Nezu, I., and Nakagawa, H. (1996) Hydrodynamic behavior of partly vegetated open-channels, Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 11, pp. 625-633. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(625)
  24. Nezu, I. and Onitsuka, K. (2001) Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements, Journal of Hydraulic Research, IAHR, Vol. 39, No. 6, pp. 629-642. https://doi.org/10.1080/00221686.2001.9628292
  25. Olsen, N.R.B. (2004) A three-dimensional numerical model for simulation of sediment movements in water intake with multiblock option, Department of Hydraulic and Environmental Engineering, The Norweigian University of Science and Technology.
  26. Olsen, N.R.B. and Kjellesvig, H.M. (1998) Three-dimensional numerical flow modeling for estimation of maximum local scour depth, Journal of Hydraulic Research, IAHR, Vol. 36, No. 4, pp. 579-590. https://doi.org/10.1080/00221689809498610
  27. Patankar, S.V. (1980) Numerical heat transfer and fluid flow. McGraw-Hill Book Company, New York.
  28. Shimizu, Y. and Tsujimoto, T. (1993) Comparison of flood flow structure between compound channel and channel with vegetation zone, Proceedings of 25th IAHR Congress, Delft, The Netherlands.
  29. Shimizu, Y. and Tsujimoto, T. (1994) Numerical analysis of turbulent open-channel flow over a vegetation layer using a ${\kappa}−{\varepsilon}$ turbulence model, Journal of Hydroscience and Hydraulic Engineering, JSCE, Vol. 11, No. 2, pp. 57-67.
  30. Stone, B.M. and Shen, H.T. (2002) Hydraulic resistance of flow in channels with cylindrical roughness, Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 5, pp. 500-506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  31. Tsujimoto, T. (1999) Fluvial processes in streams with vegetation, Journal of Hydraulic Research, IAHR, Vol. 37, No. 6, pp. 789-803. https://doi.org/10.1080/00221689909498512
  32. Tsujimoto, T. and Kitamura, T. (1995) Lateral bed load transport and sand-ridge formation near vegetation zone in an open channel, Journal of Hydroscience and Hydraulic Engineering, JSCE, Vol. 13, pp. 35-45.
  33. Tsujimoto, T. and Kitamura, T. (1996) Deposition of suspended sediment near vegetated area during flood and growth of vegetated area in dry season, Proceedings of International Conference on New/Emerging Concepts for Rivers, Rivertech96, Chicago, Illinois, USA.
  34. Wu, W. and Wang, S.Y. (2004) A depth averaged two-dimensional numerical model of flow and sediment transport in open channel with vegetation, in Rapirarian Vegetation and Fluvial Geomorphology, edited by Bennett, Water Science and Application 8, pp. 253-265.
  35. Xiaohui, S. and Li, C.W. (2002) Large eddy simulation of free surface turbulent flow in partly vegetated open-channels International Journal for Numerical Methods in Fluids, Vol. 39, pp. 919-937. https://doi.org/10.1002/fld.352