DOI QR코드

DOI QR Code

2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석

Numerical Analysis of Wave Transformation of Bore in 2-Dimensional Water Channel and Resultant Wave Loads Acting on 2-Dimensional Vertical Structure

  • 이광호 ((일)나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 김창훈 ((일)나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 김도삼 (한국해양대학교 건설환경공학부) ;
  • 황용태 (한국해양대학교 건설환경공학부)
  • 투고 : 2009.04.07
  • 심사 : 2009.06.29
  • 발행 : 2009.09.30

초록

본 연구에서는 대부분이 수조실험에 의한 추정되어 온 해중의 방파제나 호안 등의 연직벽체에 작용하는 undular 및 turbulent bore에 의한 단파파력을 수치적으로 추정하기 위하여 Navier-Stokes운동방정식에 수면형상의 추적에 VOF법(Hirt and Nichols, 1981)을 채용하고 있는 CADMAS-SURF(CDIT, 2001)를 적용한다. 적용에서는 소스코드를 본 연구의 목적에 부합하도록 일부 수정하였다. 얻어진 원수치데이터에는 급격한 파력의 증감을 나타내는 스파이크현상이 강하게 표현되었으며, 이에 수치필터를 적용하여 5Hz 이상의 고주파수성분을 필터링하였다. 수치해석결과의 신뢰성을 확보하기 위하여 Matsutomi(1991) 및 Ramsden(1996)의 수조실험결과와 비교 검토하였으며, 이로부터 매우 좋은 일치성과 유용성을 확인할수 있었고, 단파성지진해일의 작용하에 있는 구조물의 설계에 도입될 수 있을 것으로 판단된다. 그리고, 본 2차원수조내에서 단파의 변형을 수위의 시 공간변화로부터 추정함과 동시에 전파속도의 변화특성을 나타내었다. 단파의 전파속도는 전파과정에서 변화되는 것을 확인할 수 있었다.

This study numerically discusses wave forces acting on a vertical wall such as breakwaters or revetments, subjected to incident undular or turbulent bores. Due to the complex hydrodynamics of bore, its wave forces have been predicted, mainly through laboratory experiments. Numerical simulations in this paper were carried out by CADMAS-SURF(CDIT, 2001), which is based on Navier-Stokes momentum equations and VOF method (Hirt and Nichols, 1981) for tracking free water surface. Its original source code was also partly revised to generate bore in the numerical water channel. Numerical raw data computed by CADMAS-SURF included great strong spike phenomena that show the abrupt jumps of wave loads. To resolve this undesired noise of raw data, the band-pass filter with the frequency of 5Hz was utilized. The filtered results showed reasonable agreements with the experimental results performed by Matsutomi (1991) and Ramsden (1996). It was confirmed that CADMASSURF can be applied to the design of coastal structures against tsunami bores. In addition, the transformation process and propagation speed of bores in the same 2-d water channel were discussed by the variations of water level for time and space. The numerical results indicated that the propagation speed of bore was changed due to the nonlinear interactions between negative and reflected waves.

키워드

참고문헌

  1. 이광호, 김도삼, Yeh, H. (2008a) 단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구. 대한토목학회논문집, 대한토목학회, 제28권, 제5B호, pp. 575-589.
  2. 이광호, 김창훈, 황용태, 김도삼 (2008b) CADMAS-SURF에 의한 단파의 수위 및 유속변화에 대한 예측정도의 검토. 한국해양공학회지, 한국해양공학회, 제22권, 제5호, pp. 52-60.
  3. Arnason, H. (2005) Interactions between an incident bore and a free-standing coastal structure, Ph..D. Thesis, University of Washington, Washington, USA.
  4. Arikawa, T., Yamada, F., and Akiyama, M. (2005) Study of the applicability of tsunami wave force in a three-dimensional numerical wave flume. Ann. J. Coastal Engrg., JSCE, Vol. 52, pp. 46-50.
  5. ASCE (2006) Minimum design loads for buildings and other structures, ASCE/SEI Standard 7-05, ASCE.
  6. Asakura, R., Iwase, K., Ikeya, T., Takao, M., Kaneto, T., Fujii, N., and Omori, M. (2000) An experimental study on wave force acting on on-shore structures due to overflowing tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 911-915.
  7. CCH (2000) Department of Planning and Permitting of Honolulu Hawaii, Hawaii.
  8. CDIT (2001) Research and Development of Numerical Wave Channel (CADMAS-SURF), CDIT library, No. 12, Japan.
  9. Cross, R.H. (1967) Tsunami surge forces, Journal of the Waterways and Harbours Division, ASCE, Vol. 93, No.WW4, pp. 201-231.
  10. Cumberbatch, E. (1960) The impact of a water wedge on a wall, J. of Fluid Mechanics, Vol. 7, No. 3, pp. 353-373. https://doi.org/10.1017/S002211206000013X
  11. Dames and Moore (1980) Design and Construction Standards for Residential Construction in Tsunami-prone Areas in Hawaii, FEMA.
  12. FEMA-CCM (2005) Coastal Construction Manual, FEMA 55 Report, Edition 3, FEMA.
  13. Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y. (1963) Hydraulic study on tsunami, Coastal Engrg in Japan, Vol. 6, pp. 67-82.
  14. Hamzah, M.A., Mase, H., and Takayama, T. (1998) Direct simulation of solitary wave runup and pressure on coastal barrier. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 176-180. https://doi.org/10.2208/proce1989.45.176
  15. Hirt, C. W and Nichols, B.D. (1981) Volume of fluid(VOF) method for the dynamics of free boundaries. J. Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  16. Ikeno, M. and Tanaka, H. (2003) Experimental study on impulse force of drift body and tsunami runing up to land. Proc. of Coastal Engrg., JSCE, Vol. 50, pp. 721-725. https://doi.org/10.2208/proce1989.50.721
  17. Ikeno, M., Matsuyama, M., and Tanaka, H. (1998) Shoaling soliton fission of tsunami on a shelf and wave pressure for tsunamiresistant design of breakwater by large wave flume-experiments. Proc. of Coastal Engrg., JSCE, Vol. 45, pp. 366-370. https://doi.org/10.2208/proce1989.45.366
  18. Ikeno, M., Mori, N., and Tanaka, H. (2001) Experimental study on tsunami force and impulsive force by a drifter under breaking bore like tsunamis. Proc. of Coastal Engrg., JSCE, Vol. 48, pp. 846-850. https://doi.org/10.2208/proce1989.48.846
  19. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., and Buchner, B. (2005) A volume-of-fluid based simulation method for wave impact problems, J. Comput. Phys., Vol. 206, pp. 363-393. https://doi.org/10.1016/j.jcp.2004.12.007
  20. Matsutomi, H. (1988) Impulsive force on walls due to the collision of a bore, Proc. of the Japan society of civil Engineers, JSCE, Vol. 399, No. II-10, pp. 147-155.
  21. Matsutomi, H. (1989) Impulsive force due to the collision of a bore with a floating body, Proc. of Coastal Engrg., JSCE, Vol. 36, pp. 574-578. https://doi.org/10.2208/proce1989.36.574
  22. Matsutomi, H. (1991) An experimental study on pressure and total force due to bore, Proc. of Coastal Engrg., JSCE, Vol. 38, pp. 626-630. https://doi.org/10.2208/proce1989.38.626
  23. Matsutomi, H. and Ohmukai, T. (1999) Laboratory experiments on fluid force of tsunami flooded flows, Proc. of Coastal Engrg., JSCE, Vol. 46, pp. 336-340. https://doi.org/10.2208/proce1989.46.336
  24. Matsutomi, H. and Shuto, N. (1994) Tsunami inundation depth, current velocity and damage to houses, Proc. of Coastal Engrg., JSCE, Vol. 41, pp. 246-250. https://doi.org/10.2208/proce1989.41.246
  25. Mizutani, S. and Imamura, F. (2000) Hydraulic ecperimental study on wave force of a bore acting on a structure, Proc. of Coastal Engrg., JSCE, Vol. 47, pp. 946-950. https://doi.org/10.2208/proce1989.47.946
  26. Nakamura, T. (2008) Sand foundation instability due to wave-seabed-structure dynamics interaction, Ph.D. Thesis, Nagoya University, Nagoya, Japan
  27. Ramsden, J.D. (1993) Tsunami : Forces on a vertical wall caused by long waves, bores, and surges on a dry bed, Ph.D. Thesis, California Institute of Technology, California, USA.
  28. Ramsden, J.D. (1996) Forces on a vertical wall due to long waves, bores, and dry-bed surges, J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 122, No. 3, pp. 134-141. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:3(134)
  29. Ramsden, J.D. and Raichlen, F. (1990) Forces on vertical wall caused by incident bores, J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 116, No. 5, pp. 592-613. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:5(592)
  30. Sakakiyama and Kajima (1992) Numerical simulation of nonlinear wave interacting with permeable breakwaters, Proc. of 23th Int. Conf. on Coastal Engrg., ASCE, pp. 1517-1530.
  31. Takahashi, T., Shuto, N., Imamura, F., and Asai, D. (1999) A movable bed model for tsunami with exchange rate between bed land and suspend layer, Proc. of Coastal Engrg., JSCE, Vol. 46, pp. 606-610. https://doi.org/10.2208/proce1989.46.606
  32. Tanimoto, K., Takayama, T., Murakami, K., Murata, S., Tsuruya, H., Takahashi, S., Morikawa, M., Yoshimoto, Y., Nakano, S., and Hiraishi, T. (1983) Field and laboratory investigations of the tsunami caused by 1983 Nihonkai chubu earthquake, Technical note, PARI, Japan, No. 470, pp. 299.
  33. Tanimoto, K., Tsuruya, H., and Nakano, S. (1984) Experimental study of tsunami force and investigation of the cause of sea wall damages during 1983 Nihonkai chubu earthquake, Proc. of 31th Japanese Conf. on Coastal Engrg., JSCE, pp. 257-261.
  34. Yeh, H. (2006) Maximum fluid forces in the tsunami runup zone. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 132, No. 6, pp. 496-500. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)
  35. Yeh, H. (2007) Design tsunami forces for onshore structures, J. of Disaster Research, Vol. 2, No. 6, pp. 1-6.
  36. Yeom, G.S., Mizutani, N., Shiraishi, K., Usami, A., Miyajima, S., and Tomita, T. (2007) Study on behavior of drifting containers due to tsunami and collision forces, Proc. of Coastal Engrg., JSCE, Vol. 54, pp. 851-855. https://doi.org/10.2208/proce1989.54.851