DOI QR코드

DOI QR Code

Nonlinear Analysis of CFT Truss Girder with the Arch-shaped Lower Chord

아치형상의 하현재를 갖는 CFT 트러스 거더의 재료 비선형 해석

  • 송나영 (단국대학교 토목환경공학과) ;
  • 정철헌 (단국대학교 토목환경공학과) ;
  • 김영진 ((주)대우건설 기술연구원 토목연구팀)
  • Received : 2009.06.25
  • Accepted : 2009.09.02
  • Published : 2009.11.30

Abstract

Experimental and analytical studies are performed on the mechanical behavior of concrete-filled tubular(CFT) truss girders for different f/L ratios. Bending tests are conducted on two CFT truss girder specimens to determine fundamental structural characteristics such as the strength and deformation properties. Nonlinear material models for CFT members subjected to an axial compressive force are compared in this paper by using the nonlinear finite element program, ABAQUS. Previous researchers have proposed several nonlinear stress-strain models of confined concrete. In this study, the nonlinear analyses are performed applying several stress-strain models for confined concrete proposed by Mander, Sakino, Han, Susantha and Ellobody, and the results are compared with the experimental results in terms of load-deflection and load-strain relationships. Based on the comparisons of the load-deflection relationships, the models proposed by Mander and Susantha provide a maximum load about 12.0~13.8% higher and that by Sakino gives a maximum load about 7.6% higher than the experimental results. The models proposed by Han and Ellobody give a maximum load only about 0.2~1.2% higher than the test results, showing the best agreement among the proposed stress-strain models. However, the load-strain relations predicted by the existing models generally provide conservative results exhibiting larger strains than the experimental data.

본 연구에서는 f/L비가 다른 CFT 트러스 거더의 구조거동에 관한 실험 및 해석적 연구를 수행하기 위해서 2개의 실험체를 제작하였고, CFT 트러스 거더의 구조특성을 평가하기 위하여 휨실험을 수행하였다. ABAQUS에 의한 비선형 유한요소해석을 통해서 축력과 모멘트를 받는 CFT 부재의 비선형 재료모델을 비교분석하였다. CFT 부재의 구속 콘크리트 및 강재의 응력-변형률 모델은 많은 연구자들에 의해서 제시되어 왔다. 본 연구에서는 Mander, Sakino, Han, Susantha 및 Ellobody 등이 제안한 구속 콘크리트의 응력-변형률 모델을 적용하여 비선형해석을 수행하였고, 해석결과를 통해서 CFT 트러스 거더의 하중-처짐 관계, 하중-변형률 관계 등을 비교하였다. 하중-처짐 관계에서 Mander와 Susantha의 모델을 적용한 해석결과는 실험결과보다 약 12.0~13.8% 높은 하중을 예측하며, Sakino의 모델은 실험결과보다 약 7.6% 높은 하중을 예측하였다. Han과 Ellobody의 모델은 실험결과보다 약 0.2~1.2% 높은 하중을 예측하여 실험치와 가장 잘 맞는 결과를 보였다. 그러나 각 연구자의 응력-변형률 모델을 적용한 비선형 해석을 통해 산정된 하중-변형률 관계는 하중-처짐 관계와는 반대로 안전측의 결과를 보여 전반적으로 실험치보다 큰 수준의 변형률을 보였다.

Keywords

References

  1. 임석빈, 한택희, 한상윤, 강영종(2006) 구속 조건에 따른 콘크리트 응력-변형률 관계, 대한토목학회논문집, 대한토목학회, 제26권 제4A호, pp. 743-752.
  2. 정철헌, 김종석(2007) 콘크리트 충전 원형 강관의 휨 거동, 대한토목학회논문집, 대한토목학회, 제27권 제4A호, pp. 553-559.
  3. 정철헌, 송나영, 김인규, 진병무(2009) CFT 트러스 거더의 휨강성 및 진동특성, 대한토목학회논문집, 대한토목학회, 제29권제1A호, pp. 19-30.
  4. 정철헌, 송나영, 마향욱, 오현철(2009) 아치형상의 하현재를 갖는 CFT 트러스 거더의 구조성능 평가, 대한토목학회논문집, 대한토목학회, 제c권 제4A호, pp. 315-327.
  5. 한택희, 한상윤, 강영종(2007) 내부 구속 중공 철근 콘크리트 부재의 비선형 재료 모델 개발, 대한토목학회논문집, 대한토목학회, 제27권 제1A호, pp. 11-26.
  6. 大田考二, 野中哲池(1998) 鋼製ラ一メン橋脚の地震時保有水平耐 力の解析法に關する檢討, 橋梁と基礎, 98-4, pp. 24-32.
  7. 石出一郎, 川利彦, 崎野健治, 川口(1996) コン リ一ト充塡 形鋼管柱の彈塑性性狀に關する硏究(その3)純曲げ實驗結果および解析, 日本建築學會大會學術講演槪要集, pp. 1011-1012.
  8. ABAQUS User's Manual (2008) version 6.8, Hibbitt, Karlsson &Sorensen, Inc.
  9. Abdel-Rahman, N. and Sivakumaran, K.S. (1997) Material properties models for analysis of cold-formed steel members, Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp. 1135-1143. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1135)
  10. ACI (1999) Building code requirements for structural concrete and commentary, ACI 318-99, Detroit (USA) : American Concrete Institute.
  11. Association of New Urban Housing Technology (1997) Technical Guide to Concrete-filled steel tube structures, pp. 38-41.
  12. Chen, W.F. and Chen, C.H. (1973) Analysis of concrete-filled steel tubular beam-columns, Publications IABSE, 33-II, pp. 37.
  13. Collins, M.P., Mitchell, D., and MacGregor, J.G. (1993) Structural design considerations for high-strength concrete, Concrete Int., May, pp. 27-34.
  14. Elchalakani, M., Zhao, X.L., and Grzebieta, R.H. (2001) Concretefilled circular steel tubes subjected to pure bending, Journal of Constructional Steel Research, 57, pp. 1141-1168. https://doi.org/10.1016/S0143-974X(01)00035-9
  15. Ellobody, E., Young, B., and Lam, D. (2005) Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns, Journal of Constructional Steel Research, 62, pp. 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  16. Elremaily, A. and Azizinamini, A. (2002) Behavior and strength of circular concrete-filled tube columns, Journal of Steel Constructional Steel Research, 58, pp. 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  17. Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004) Behavior of eccentrically loades concrete-filled steel tubular columns, Journal of Structural Engineering, ASCE, Vol. 130, No.2, pp. 203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  18. Ge, H.B., Susantha, K.A.S., Satake, Y., and Usami T. (2003) Seismic demand predictions of concrete-filled steel box columns,Engineering Structures, 25, pp. 337-345. https://doi.org/10.1016/S0141-0296(02)00162-1
  19. Gho, W.M. and Liu, D. (2004) Flexural behaviour of high-strength rectangular concrete filled steel hollow sections, Journal of Constructional Steel Research 60, pp. 1681-1696. https://doi.org/10.1016/j.jcsr.2004.03.007
  20. Han, L.H. (2000) Concrete filled steel tubular structures, Science Press Peking, China (in Chinese).
  21. Han, L.H., Zhao, X.L., and Tao, Z. (2001) Tests and mechanics model of concrete- filled SHS stub columns, columns and beam-columns, Steel Composite Structures-An International Journal, Vol. 1, No. 1, pp. 51-74. https://doi.org/10.1296/SCS2001.01.01.04
  22. Hognestad, E. (1951) Astudy of combined bending and axial load in reinforced concrete members, Bull, 399, University of Illinois Engineering Experiment Station, Urbana, I11.
  23. Hu, H.T. and Schnobrich, W.C. (1989) Constitutive modeling of concrete by using nonassociated plasticity, Journal of Materials in Civil Engineering, Vol. 1, No. 4, pp. 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  24. Hu, H.T., Huang, C.S., Wu, M.H., and Wu, Y.M. (2003) Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect, Journal of Structural Engineering, ASCE, Vol. 129, No. 10, pp. 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  25. Hu, H.T., Huang, C.S., and Chen, Z.L. (2005) Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination, Journal of Constructional Steel Research, 61, pp. 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  26. Inoue, N., Koshika, N., and Suzuki, N. (1985) Analysis of shear wall based on collins panel test, proceedings of the seminar sponsored by japan society for the promotion of science and the U.S. National Science Foundation, Tokyo, Japan, pp. 288-299.
  27. Japan Society of Civil Engineers (2006) Manual of performance based design for hybrid structures.
  28. Jerome, F.H. and Brett, C.G. (1996) Representation of concretefilled steel tube cross-section strength, Journal of Structural Engineering, ASCE, Vol. 122, No. 11, pp. 1327- 1336. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
  29. Kawano, A. and Sakino, K. (2003) Seismic resistance of CFT truss,Engineering Structures, 25, pp. 607-619. https://doi.org/10.1016/S0141-0296(02)00170-0
  30. Liu, D. (2006) Behaviour of eccentrically loaded high-strength rectangular concrete- filled steel tubular columns, Journal of Constructional Steel Research, 62, pp. 839-846. https://doi.org/10.1016/j.jcsr.2005.11.020
  31. Lu, F.W., Li, S.P., Li, D.W., and Sun, G. (2007) Flexural behavior of concrete filled non-uni-thickness walled rectangular, Journal of Constructional Steel Research, 63, pp. 1051-1057. https://doi.org/10.1016/j.jcsr.2006.09.006
  32. Lu, Y.Q. and Kennedy, D.J.L. (1994) The flexural behaviour of concrete filled hollow structural sections. Can. J. Civil Eng. pp.111-130.
  33. Mander, J.B., Priestley, M.J.N., and Park, R. (1988) Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp. 1804-1823. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  34. Mursi, M. and Uy, B. (2003) Strength of concrete filled steel box columns incoporating interaction buckling, Journal of Structural Engineering, ASCE, Vol. 129, No. 5, pp. 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626)
  35. Nakamura, S., Hosaka, T., and Nishiumi, K. (2004) Bending behavior of steel pipe girders filled with ultralight mortar, Journal of Bridge Engineering, ASCE, Vol. 9, No. 3, pp. 297-303. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:3(297)
  36. Nakamura, S. and Morishita, H. (2008) Bending strength of concretefilled narrow-width steel box girder, Journal of Constructional Steel Research, 64, pp. 128-133. https://doi.org/10.1016/j.jcsr.2007.03.001
  37. O'Shea, M. and Bridge, R. (2000) Design of circular thin-walled concrete filled steel tubes, Journal of Structural Engineering, Vol. 126, No. 11, pp. 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  38. Patsch, A., Gerbaudo, C.F., and Prato, C.A. (2002) Analysis and testing of Piles for Ship Impact Defenses, Journal of Bridge Engineering, July/August, pp. 236-244.
  39. Popvics, S. (1973) A numerical approach to the complete stressstrain curves for concrete, Cement and Concrete Research, Vol.3, No. 5, pp. 583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  40. Richart, F.E., Brandtzaeg, A., and Brown, R.L. (1928) A study the failure of concrete under combined compressive stresses., Bulletin 185, Champaign(IL), University of Illinois Engineering Ecperimental Station.
  41. Saenz, L.P. (1964) Equations for the stress-strain curve of concrete,ACI J. Proc., Vol. 61, No. 22, pp. 1229-1235.
  42. Sakino, K. and Sun, Y. (1994) Stress-strain curve of concrete confined by rectilinear hoop, J. Struct. Construct. Eng., 461, pp.95-104.
  43. Sakino, K., Nakahara, H., Morino, S., and Nishiyama, I. (2004) Behavior of centrally loaded concrete-filled steel-tube short columns, Journal of Structural Engineering, ASCE, Vol. 130, No. 2, pp. 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  44. Schneider, S.P. (1998) Axially loaded concrete-filled steel tube,Journal of Structural Engineering, ASCE, Vol. 124, No. 10, pp.1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  45. Sen, H.K. (1969) Triaxial effects in concrete-filled tubular steel columns, Ph.D. Thesis, London University.
  46. Shams, M. and Saadeghvazin, M.A. (1999) Nonlinear response of concrete-filled steel tubular columns under axial loading, ACI Structural Journal, 96-S112, November- December, pp. 1009-1017.
  47. Susantha, K.A.S., Ge, H., and Usami, T. (2001) Uniaxial stressstrain relationship of concrete confined by various shaped steel tubes, Engineering Structures, 23, pp. 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7
  48. Tomii's, M. (1991) Ductile and strong columns composed of steel tube, infilled concrete and longitudinal bars, Proc. 3rd Int. Conf. on Steel-Concrete Composite Struct., Fukuokda, Japan, pp. 39-66.
  49. Uy, B. (2000) Strength of concrete filled steel box columns in corporating local buckling, Journal of Structural Engineering, Vol. 126, No. 3, pp. 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
  50. Vecchio, F.J. and Collins, M.P. (1986) The modified compression field theory for reinforced concrete elements subjected to shear, ACI Struc. J., Vol. 83, No. 2, pp. 219-231.
  51. Wheeler, A.T. (2000) Thin-walled steel tube filled with high strength concrete in bending, Engineering Foundation Conferences, Composite Construction IV, Vol. 2, Banff, Alberta, Canada.
  52. Xiong, D.X. and Zha, X.X. (2007) A numerical investigation on the behaviour of concrete-filled steel tubular columns under initial stresses, Journal of Constructional Steel Research, 63, pp. 599-611. https://doi.org/10.1016/j.jcsr.2006.07.002
  53. Zheng, Y., Usami, T., and Ge, H.B. (2000) Ductility of thin-walled steel box stub-columns, Journal of Structural Engineering, ASCE, Vol. 126, No. 11, pp. 1303-1311.