References
- Asuncion, A. and D. J. Newman, UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA : University of California, School of Information and Computer Science, 2007.
- Babuska, R. and H. Verbruggen, "Neuro-fuzzy methods for nonlinear system identification", Annual Reviews in Control, Vol.27(2003), 73-85. https://doi.org/10.1016/S1367-5788(03)00009-9
- Bersini, H. and G. Bontempi, "Now comes the time to defuzzify neuro-fuzzy models", Fuzzy Sets and Systems, Vol.90(1997), 161-169. https://doi.org/10.1016/S0165-0114(97)00082-1
- Bodenhofer, U. and P. Bauer, A formal model of interpretability of linguistic variables : Trade-off between Accuracy and Interpretability in Fuzzy Rule-Based Modelling, Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 2002.
- Chen, M.-Y. and D. A. Linkens, "Rule-base self-generation and simplification for data-driven fuzzy models", Fuzzy Sets and Systems, Vol.142, No.2(2004), 243-265. https://doi.org/10.1016/S0165-0114(03)00160-X
- Chiu, S., "Fuzzy Model Identification Based on Cluster Estimation", Journal of Intelligent and Fuzzy Systems, Vol.2, No.3(1994).
- Cordon, O. and F. Herrera, "A proposal for improving the accuracy of linguistic modeling", IEEE Trans. Fuzzy Systems Vol.8, No.3(2000), 335-344. https://doi.org/10.1109/91.855921
- Efendigil, T., S. Onut and C. Kahraman, "A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models : A comparative analysis", Expert Systems with Applications, Vol.36 (2009), 6697-707. https://doi.org/10.1016/j.eswa.2008.08.058
- Han M., Y. Sun and Y. Fan, "An improved fuzzy neural network based on T. S model", Expert Systems with Applications, Vol.34 (2008), 2905-2920. https://doi.org/10.1016/j.eswa.2007.05.020
- Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems", IEEE Transactions on Systems, Man, and Cybernetics, Vol.23, No.3(1993), 665-685. https://doi.org/10.1109/21.256541
- Jang, J.-S. Roger and C.-T. Sun, "Neuro-Fuzzy Modeling and Control", The Proceedings of the IEEE, Vol.83, No.3(1995), 378-406. https://doi.org/10.1109/5.364486
- Jin, Y. W., V. Seelen and B. Sendhoff, "An approach to rule-based knowledge extraction", Proceedings of IEEE Conference on Fuzzy Systems, 1998, 1188-1193.
- Jin, Y. W., V. Seelen and B. Sendhoff, "On generating flexible, complete, consistens and compact (FC3) fuzzy rules from data using evolution strategies", IEEE Transactions on Systems, Man, and Cybernetics, Vol.29, No.4(1999), 829-845. https://doi.org/10.1109/3477.809036
- Jin, Y., "Fuzzy modeling of high-dimensional systems : complexity reduction and interpretability improvement", IEEE Transactions on Fuzzy Systems, Vol.8, No.2(2000), 212-221. https://doi.org/10.1109/91.842154
- Matlab, Fuzzy logic toolbox 2 user's guide. The Math Works Inc, 2009.
- Mikut, R., J. Jakel, and L. Groll, "Interpretability issues in data-based learning of fuzzy systems", Fuzzy Sets and Systems, Vol.150(2005), 179-197. https://doi.org/10.1016/j.fss.2004.06.006
- Nauck, D. and R. Kruse, "Neuro-fuzzy systems for function approximation", Fuzzy Sets and Systems, Vol.101(1999), 261-271. https://doi.org/10.1016/S0165-0114(98)00169-9
- Song, H. S. and J. K. Kim, "Design and Evaluation of ANFIS-based Classification Model", Journal of Inteligence and Information Systems, Vol.15, No.3(2009), 151-165.
- Takagi, T. and M. Sugeno, "Derivation of fuzzy control rules from human operator's control actions", Proceedings of the IFAC symposium on fuzzy information, knowledge representation and decision analysis, 1983, 55-60.
- Valente J., "Semantic constraints for membership function optimization", IEEE Trans, Systems Man Cybernetics.Part A : Systems and Humans Vol.29, No.1(1999), 128-138. https://doi.org/10.1109/3468.736369