Phaleria macrocarpa Suppress Nephropathy by Increasing Renal Antioxidant Enzyme Activity in Alloxan-Induced Diabetic Rats

  • 발행 : 2009.09.30

초록

The protective effects of Phaleria macrocarpa (PM) against oxidative stress in diabetic rats were investigated. Diabetes was induced in male Sprague Dawley rats using alloxan (150 mg/kg i.p). After the administration of PM fractions for two weeks the diabetic symptoms, nephropathy and renal antioxidant enzymes were evaluated. The results showed that the oral PM treatments reduced blood glucose levels in diabetic rats. The PM fractions decreased kidney hypertrophy and diminished blood urea nitrogen (BUN) in diabetic rats. Malondialdehyde (MDA), a lipid peroxidation marker, was increased in diabetic animals, but was suppressed by the PM treatments. In addition, the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased compared with those in the normal rats, but were restored by PM treatments. The PM fractions also suppressed the level of MDA in the kidney. In conclusion, the anti hyperglycemic and anti-nephropathy of P. macrocarpa may be correlated to the increased renal antioxidant enzyme activity in the kidney.

키워드

참고문헌

  1. Aebi, H., Catalase. In "Methods of enzymatic analysis" Vergmeyer, M.U., Academic Press, New York., 2, 673 (1974)
  2. Akkus, I., Kalak, S., Vural, H., Caglayan O., Menekse, E., and Can G., Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta., 244, 221-227 (1996) https://doi.org/10.1016/0009-8981(96)83566-2
  3. Bansal, R., Ahmad, N., and Kidwai, J.R., Alloxan-glucose interaction: Effect on incorporation of C-leucine into pancreatic islets of rat. Acta Diabetologica Latina, 17, 135-143 (1980) https://doi.org/10.1007/BF02580995
  4. Baynes, J.W. and Thorpe, S.R., Role of oxidative stress in diabetes vascular complications: a new perspective of an old paradigm. Diabetes, 48, 1-9 (1999) https://doi.org/10.2337/diabetes.48.1.1
  5. Bohlender, H.M., Franke, S., Stein, G., and Wof, G., Advanced glycation end products and the kidney. Am. J. Physiol. Renal. Physiol. 289, F645-F659 (2005) https://doi.org/10.1152/ajprenal.00398.2004
  6. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications, Nature, 414, 813-820 (2001) https://doi.org/10.1038/414813a
  7. Bryla, J., Kiersztan, A., and Jagielski, A.K., Promising novel approaches to diabetes mellitus therapy: pharmacological, molecular and cellular insights, Eur. Citizen's. Qual. Life., 1, 137-161 (2003)
  8. Ellman, G.L., Tissue sulfhydryl group. Arc. Biochem. Biophys. 237, 1589-95 (1959)
  9. Evans, J.L., Goldfine, I.D., Maddux, B.A., and Grodsky, G.M., Oxidative stress and stress-activated signaling pathyways: a unifying hypothesis of type 2 diabetes. Endocr. Rec., 23, 599-622 (2002) https://doi.org/10.1210/er.2001-0039
  10. Faried, A., Kurnia, D., Faried, L.S., Usman, N., Miyazaki, T., Kato, H., and Kuwano, H., Anticancer effects of gallic acid isolated from Indonesia herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol., 30, 605-613 (2007)
  11. Giardino, I., Edelstein, D., and Brownlee, M., BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest., 97, 1422-1428 (1996) https://doi.org/10.1172/JCI118563
  12. Gill, P.S. and Wilcox, C.S., NADPH oxidases in the kidney. Antioxid. Redox. Signal., 8, 1597-1607 (2006) https://doi.org/10.1089/ars.2006.8.1597
  13. Harmanto, N., Conquering Disease in Unison with Mahkota Dewa, Ir. Harmanto (Ed.), p.14 PT Mahkota Dewa Indonesia, North Jakarta 2003
  14. Lowry, O., H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
  15. Mahboob, M., Rahman, M.F., and Grover, P., Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Med. J., 46, 322-324 (2005)
  16. Marklund S. and Marklund, G., Involvement of the superoxide anion radical in the autooxidation of pyrogallol & convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  17. Mitchell, J.R., Jollow, D.W., Potter, W.Z., Gillette, J.R., and Brodie, B.B., Acetaminophen-induced hepatic necrosis IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 187, 211-217 (1973)
  18. Ohkawa, H., Ohishi, N., and Yaki, K., Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  19. Oshimi, S., Zaima, K., Matsuno, Y., Hirasawa, Y., Iizuka, T., Studiawan, H., Indrayanto, G., Zaini, N.C., and Morita, H., Studies onthe constituents from the fruits of Phaleria macrocarpa. Nat. Med. (Tokyo). 62, 207-210 (2008) https://doi.org/10.1007/s11418-007-0209-9
  20. Paglia, E.D. and Valentine, W.N., Studies on the quantitative and qualitative charactrization of erythrocytes glutathione peroxide. J. Lab. Clin. Med,. 70, 158-169 (1967)
  21. Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., and Takahashi, H., Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad,and the glutathione connection. Diabetes, 52, 581-587 (2003) https://doi.org/10.2337/diabetes.52.3.581
  22. Saufi, A., von Heimendahl, C.B., Alfermann, A.W., and Fuss, E., Stereochemistry of lignans in Phaleria macrocarpa (Scheff.) Boerl. Z. Naturforsch., 63, 13-16 (2008)
  23. Stevens, M.J., Redox-based mechanisms in diabetes. Antioxid. Redox. Signal., 7, 1483-1485 (2005) https://doi.org/10.1089/ars.2005.7.1483
  24. Sugiwati, S., Kardono, L.B.S., and Bintang, M., Alpha-glucosidase inhibitory activity and hypoglycemic effect of Phaleria macrocarpa fruit pericarp extracts by oral administration to rats. J. Applied Sci., 6, 2312-2316 (2006) https://doi.org/10.3923/jas.2006.2312.2316
  25. Triastuti, A, Bachri, M.S., and Choi, J.W., Protective effect of butanol fraction of Phaleria macrocarpa on oxidative stress associated with atreptozotocin induced diabetic mice. International Symposium, Pharmaceutical Society of Korea. PD2-5 (2008)
  26. Triastuti, A., Tito, F., and Wibowo, A., Antiangiogenic effect of the ethanolic extract from Phaleria macrocarpa Boerl. fruit on chick embryo chorio allantoic membrane (CAM) induced by BFGF, National Symposium in Medicinal Plants of Indonesia, Solo-Indonesia (2006)
  27. Turko I.V., Marcondes, S., and Murad, F., Diabetes-associated nitration of tyrosine and activation of succinyl-CoA:3-oxoacid CoA transferase. Am. J. Physiol. Heart. Circ. Physiol., 281, 2289-2294 (2001)
  28. Vinik, A.I. and Vinik, E., Prevention of the complications of diabetes. Am. J. Manag. Care., 9, 63-80 (2003)
  29. Wells, B.G., Dipiro, J.T., Schwinghammer, T.L., and Hamilton, C.W., Pharmacotherapy Handbook, McGraw-Hill, pp. 170-181 (2003)
  30. West, I.C., Radicals and oxidative stress in diabetes. Diabet Med., 17, 171-180 (2000) https://doi.org/10.1046/j.1464-5491.2000.00259.x
  31. Wild, S., Roglic, G., Green, S., Sicree, R., and King, H., Global prevalence of diabetes, estimates for the year 2000 and projections for 2030, Diabetes Care, 27, 1047-1053 (2004) https://doi.org/10.2337/diacare.27.5.1047
  32. Winarto, W.P., Mahkota Dewa: Budidaya dan pemanfaatan Untuk Obat. Penebar Swadaya, Indonesia (2003)
  33. Yamamoto, H., Uchigata, Y., and Okamoto, H., Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature, 294, 284-286 (1981) https://doi.org/10.1038/294284a0
  34. Zhang, Y.B., Xu, X.J., and Liu, H.M., Chemical constituents from Mahkoda Dewa. J. Asian Nat. Prod. Res., 8, 119-123 (2006) https://doi.org/10.1080/10286020500480472