DOI QR코드

DOI QR Code

TGIF에 의한 Human cervical cancer oncogene (HCCR) 발현 조절

TGIF Site is Involved in Expression of Human Cervical Cancer Oncogene (HCCR) 발현 조절

  • 조광원 (한양대학교 의과대학 의생명과학연구원)
  • Cho, Goang-Won (Institute of Biomedical Science, College of Medicine, Hanyang University)
  • 발행 : 2009.09.30

초록

원암단백질로 알려진 Human cervical cancer oncogene (HCCR)은 발암억제 단백질인 p53과 작용하여 다양한 암조직에서 암의 유발을 촉진한다. 그러나, 아직 정확한 발암 유도기전이 알려져 있지 않다. 이러한 의문을 해소하기 위한 일환으로 본 연구에서는 HCCR의 발현이 어떻게 조절되는지를 조사하였다. 이를 위해 먼저 HCCR 5' 쪽의 promoter 영역을 분리하여 Luciferase assay법을 이용하여 K562, HEK293, A549 세포에서 분석하였고, Promoter의 -370에서 -406사이 36bp의 첨가로 promoter활성이 의미 있게 억제됨을 관찰하였다. 또한, 36 bp만을 포함하는 probe를 이용한 mobility shift assays (EMSA)에서 핵단백질이 결합함을 관찰하였고, 컴퓨터를 이용한 분석에서 TG-interacting factor (TGIF)에 대한 consensus sequences 존재함을 관찰하였다. TGIF 만을 포함하는 probe (TC)와 돌연변이를 유발한 probe (mTG)를 이용한 EMSA에서 이 자리에 TGIF가 결합함을 보였다. 또한, TGIF 자리에 돌연변이를 유발하면(pGL3-mTGIF) 발현의 억제가 회복됨을 관찰하였다. 본 연구에서는 HCCR promoter의 특성을 분석하였고, 이 과정에서 -390에서 -366 사이에 TGIF 전사인자가 결합하여 전사활성을 조절함을 증명하였다.

Proto-oncogene human cervical cancer oncogene (HCCR) functions as a negative regulator of p53 and contributes to tumorigenesis in various human tissues. However, it is unknown how HCCR contributes to the cellular and biochemical mechanisms of human tumorigenesis. In this study, we showed how the expression of HCCR is modulated. The luciferase activity assay indicated that the HCCR 5'-flanking region at positions -370 to -406 plays an important role in the promoter activity. Computational analysis of this region identified one consensus sequence for the TG-interacting factor (TGIF) located at -390 to -366 (TG). Mobility shift assays (EMSA) revealed that nuclear proteins from K562 bind to the TG site, but not to the mutated TG site. The reporter activity assay with promoter constructs carrying mutated TGIF sequences pGL3-mTGIF significantly increased reporter activities compared to wild type constructs pGL3-$406{\sim}+30$. In this study, we characterized the HCCR promoter and found that HCCR expression was partially regulated by the transcription repressor TGIF, which bound the promoter at positions -390 to -366.

키워드

참고문헌

  1. Bertolino, E., B. Reimund, D. Wildt-Perinic, and R. G. Clerc. 1995. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J. Biol. Chem. 270, 31178-31188 https://doi.org/10.1074/jbc.270.52.31178
  2. Bishop, J. M. 1991. Molecular themes in oncogenesis. Cell 64, 235-248 https://doi.org/10.1016/0092-8674(91)90636-D
  3. Busby-Earle, R. M., C. M. SteeL A. R. Williams, B. Cohen, and C. C. Bird. 1994. p53 mutations in cervical carcinogenesis- low frequency and lack of correlation with human papillomavirus status. Br. J. Cancer 69, 732-737 https://doi.org/10.1038/bjc.1994.138
  4. Cartharius, K, K Frech, K Grote, B. Klocke, M. Haltmeier, and A. Klingenhoff. 2005. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933-2942 https://doi.org/10.1093/bioinformatics/bti473
  5. Chen, F., K Ogawa, R. P. Nagarajan, M. Zhang, C. Kuang, and Y. Chen. 2003. Regulation of TG-interacting factor by transforming growth factor-beta. Biochem. J. 371, 257-263 https://doi.org/10.1042/BJ20030095
  6. Cho, G. W., S. M. Shin, H. Namkoong, H. K Kim, S. A. Ha, and S. Y. Hur. 2006. The phosphatidylinositol 3-kinase/Akt pathway regulates the HCCR-1 oncogene expression. Gene 384, 18-26 https://doi.org/10.1016/j.gene.2006.07.006
  7. Cho, G. W., S. M. Shin, H. K Kim, S. A. Ha, J. H. Yoon, and J. W. Kim. 2007. HCCR-1, a novel oncogene, encodes a mitochondrial outer membrane protein and suppresses the UVC-induced apoptosis. BMC Cell BioI. 8, 50 https://doi.org/10.1186/1471-2121-8-50
  8. Crook, T., D. Wrede, J. A. Tidy, W. P. Mason, D. J. Evans, and K H. Vousden. 1992. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirusnegative tumours. Lancet. 339, 1070-1073 https://doi.org/10.1016/0140-6736(92)90662-M
  9. Fearon, E. R. 1992. Genetic alterations underlying colorectal tumorigenesis. Cancer Surv. 12, 119-136
  10. Gehring, W. L M. Affolter, and T. Burglin. 1994. Homeodomain proteins. Annu. Rev. Biochem. 63, 487-526 https://doi.org/10.1146/annurev.bi.63.070194.002415
  11. Ko, L Y. H. Lee, S. Y. Hwang, Y. S. Lee, S. M. Shin, J. H. Hwang, and J. W. Kim. 2003. Identification and differential expression of novel human cervical cancer oncogene HCCR-2 in human cancers and its involvement in p53 stabilization. Oncogene 22, 4679-4689 https://doi.org/10.1038/sj.onc.1206624
  12. Massague, J. 1990. The transforming growth factor-beta family. Annu. Rev. Cell BioI. 6, 597-641 https://doi.org/10.1146/annurev.cb.06.110190.003121
  13. Nusslein-Volhard, C. and E. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801 https://doi.org/10.1038/287795a0
  14. Sebastian, T. and P. F. Johnson. 2006. Stop and go: anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta. Cell Cycle 5, 953-957 https://doi.org/10.4161/cc.5.9.2733
  15. Todd, R. and D. T. Wong. 1999. Oncogenes. Anticancer Res. 19, 4729-4746
  16. Wotton, D., P. S. Knoepfler, C. D. Laherty, R. N. Eisenman, and J. Massague. 2001. The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ. 12, 457-463
  17. Wotton, D., R. S. Lo, L.A. Swaby, and J. Massague. 1999. Multiple modes of repression by the Smad transcriptional corepressor TGIF. J. BioI. Chem. 274, 37105-37110 https://doi.org/10.1074/jbc.274.52.37105
  18. Wotton, D., R. S. Lo, S. Lee, and J. Massague. 1999. A Smad transcriptional corepressor. Cell 97, 29-39 https://doi.org/10.1016/S0092-8674(00)80712-6