DOI QR코드

DOI QR Code

Biochemical Characterizations of Phenylalanine Ammonia-Lyase and its Mutants to Develop an Enzymatic Therapy for Phenylketonuria

페닐케톤뇨증의 효소치료 개발을 위한 phenylalanine ammonia-lyase 및 유전자 변이형의 생화학적 특성

  • Kim, Woo-Mi (Department of Pharmacology, Kosin University College of Medicine)
  • 김우미 (고신대학교 의과대학 약리학교실)
  • Published : 2009.09.30

Abstract

Enzyme substitution with recombinant phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is currently being explored for treatment of phenylketonuria (PKU), an autosomal recessive genetic disorder with mutations of the gene encoding phenylalanine-4-hydroxylase (EC 1.14.16.1). However, oral administration of PAL is limited because of proteolytic digestion in the gastrointestinal tract. The aim of this study was to determine the biochemical properties of PAL and delinate the susceptibility of wild-type PAL to pancreatic proteolysis by exploring several mutants, and to develop therapeutic drugs with PAL for PKU. The specific activity of PAL was assayed and its optimal pH, temperature stability, and intestinal protease susceptibility were investigated. Its $V_{max}$ values for phenylalanine and tyrosine were 1.77 and $0.47{\mu}mol$/ min/mg protein, respectively, and its $K_m$ values were $4.77{\times}10^{-4}$ and $4.37{\times}10^{-4}\;M$, respectively. PAL showed an optimal pH at 8.5, corresponding to the average pH range of the small intestine. It showed no loss of activity at $-80^{\circ}C$ for 5 months and possessed 93.4% of its activity under $4^{\circ}C$ for 4 wks. PAL was susceptible to chymotrypsin digestion and, to a lesser extent, to trypsin, elastase, carboxypeptidase A, and B. The trypsin and chymotrypsin cleaving sites were mutated to investigate protection from pancreatic digestion and the specific activities of these mutants were evaluated. The six mutants displayed low specific activities compared to the wild-type, suggesting that the primary trypsin and chymotrypsin cleaving sites may be essential for catalytic reaction. The PAL mutants could therefore be applied as a pretreatment modality without susceptibility to proteolytic attack, however, additional modification for enhancing enzymatic activity is needed to reduce the Phe levels effectively.

페닐케톤뇨증은 상염색체 열성으로 유전되며, phenylalanine-4-hydroxylase (PAH, EC 1.14.16.1)의 돌연변이에 의해 효소 불활성화를 초래하는 질환이다. 최근 유전자 재조합된 phenylalanine ammonia-lyse (PAL)에 의한 효소 대체요법이 보고된 바 있다. 이 효소를 경구용 약제로 개발하기 위하여 효소활성을 나타내기 위한 최적 조건들을 알아야 하며, 위장관내 소화효소에 의해 분해되지 않는 구조적 안정성을 유지하여야 한다. 따라서 본 연구에서는 PAL의 생화학적 특성을 규명하고, 이를 바탕으로 위장관내 소화효소로부터 저항할 수 있는 변이형들을 만들고자 하였으며, 이러한 구조적 변화를 통하여 효소의 특이 활성도가 유지될 수 있는지를 보고자 하였다. PAL의 특이 활성도를 측정하였고, 효소 활성을 나타내기 위한 최적 pH, 온도 변화에 따른 효소 활성도, 단백분해효소에 의한 활성도 변화를 측정하였다. PAL의 Vmax는 페닐알라닌과 티로신에 대하여 각각 1.77, $0.47{\mu}mol$/ mg x protein로 나타났으며, Km은 페닐알라닌에 대하여 $4.77{\times}10^{-4}\;M$,티로신에 대하여 $4.37{\times}10^{-4}\;M$로 나타났다. 또한 pH 8.5에서 가장 높은 활성을 나타내었는데, 이는 소장의 평균 pH와 유사하다. PAL의 효소 활성은 $-80^{\circ}C$에서 5개월 동안 유지되었으며, $4^{\circ}C$에서 1주일 동안 93.4%의 활성을 유지하였다. PAL은 키모트립신에 의해 쉽게 분해되었으며, 이보다 약한 정도로 트립신, elastase, carboxypeptidase A, B에 의해 분해 되었다. 췌장 소화효소에 대한 저항성을 증가시키기 위하여 트립신, 키모트립신 절단부위 아미노산을 변이시켜 유전자 변이형을 만들었고, 효소 활성도를 측정하였다. 6개의 유전자 변이형은 모두 저하된 효소 활성도를 나타내었는데, Y110H는 0.084, Y110A와 Y110L은 0, R123A는 0.11, R123H는 0.074, R123Q는 0.033으로 나타났다. 이러한 결과는 트립신 및 키모트립신 절단부위 아미노산이 PAL의 효소 활성에 필수적인 역할을 하고 있음을 나타낸다. PAL 변이형은 단백분해작용으로부터 보호할 수 있는 전처치 방법이지만, 페닐알라닌을 효과적으로 저하시키기 위해서 효소활성을 유지할 수 있는 다음 단계의 처치가 필요하다.

Keywords

References

  1. Abell, C. W. and R. S. Shen. 1987. Phenylalanine ammo-nia-Iyase from the yeast Rhodotorula glutinis. Methods Enzymol. 142, 242-249 https://doi.org/10.1016/S0076-6879(87)42033-8
  2. Anson, J. G, H. J. Gilbert, J. D. Oram, and N. P. Minton. 1987. Complete nucleotide sequence of the Rhodosporidium toruloides gene coding for phenylalanine ammonia-lyase. Gene 58, 189-199 https://doi.org/10.1016/0378-1119(87)90375-1
  3. Bourget, L. and T. M. Chang. 1986. Phenylalanine ammonia-lyase immobilized in microcapsules for the depletion of phenylalanine in plasma in phenylketonuric rat model. Biochim. Biophys. Acta. 883, 432-438 https://doi.org/10.1016/0304-4165(86)90281-3
  4. Bourget, L., and T. M. Chang. 1989. Effects of oral administration of artificial cells immobilized phenylalanine ammonia- lyase on intestinal amino acids of phenylketonuric rats. Biomater. Artif Cells Artif Organs. 17, 161-181
  5. Brannigan, J. A and A J. Wilkinson. 2002. Protein engineering 20 years on. Nat. Rev. Mol. Cell BioI. 3, 964-970 https://doi.org/10.1038/nrm975
  6. Calabrese, J. C., D. B. Jordan, A Boodhoo, S. N. Sariaslani, and T. Vannelli. 2004. Crystal structure of phenylalanine ammonia-lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43, 11403-11416 https://doi.org/10.1021/bi049053+
  7. Cockburn, F. and B. J. Clark. 1996. Recommendations for protein and amino acid intake in phenylketonuric patients. Eur. J. Pediatr. 155, 125-129 https://doi.org/10.1007/BF02075765
  8. Donlun, J., H. Levy, and C. R. Scriver. 2004. The metabolic and molecular basis of inherited disease. Chap. 77, McGraw-Hilt New York
  9. Gilbert, H. J., I. N. Clarke, R. K. Gibson, J. R. Stephenson, and M. Tully. 1985. Molecular cloning of the phenylalanine ammonia lyase gene from Rhodosporidium toruloides in Escherichia coli K-12. J. Bacteriol. 161, 314-320
  10. Gilbert, H. J. and G W. Jack. 1981. The effect of proteinases on phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis. Biochem. J. 199, 715-723
  11. Gilbert, H. J. and M. Tully. 1985. Protection of phenylalanine ammonia-lyase from proteolytic attack. Biochem. Biophys. Res. Commun. 131, 557-563 https://doi.org/10.1016/0006-291X(85)91272-0
  12. Hoskins, J. A, S. B. Holliday, and A M. Greenway. 1984. The metabolism of cinnamic acid by healthy and phenylketonuric adults: a kinetic study. Biomed. Mass Spectrum. 11, 296-300 https://doi.org/10.1002/bms.1200110609
  13. Hoskins, J. A, G Jack, H. E. Wade, R. J. Peiris, E. C. Wright, D. J. Starr, and J. Stern. 1980. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet 1, 392-394
  14. Kim, W., H. Erlandsen, S. Surendran, R. C. Stevens, A Gamez, K. Michals-Matalon, S. K. Tyring, and R. Matalon. 2004. Trends in enzyme therapy for phenylketonuria. Mol. Ther. 10, 220-224 https://doi.org/10.1016/j.ymthe.2004.05.001
  15. Koukot J. and E. E. Conn. 1961. The metabolism of aromatic compounds in higher plans. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. BioI. Chem. 236, 2692-2698
  16. Levy, H. 1999. Phenylketonuria; old disease, new approach to treatment. Proc. Natl. Acad. Sci. (USA) 96, 1811-1813 https://doi.org/10.1073/pnas.96.5.1811
  17. Liu, L X. Jia, J. Zhang, H. Xiang, W. Hu, and Y. Zhou. 2002. Study on a novel strategy to treatment of phenylketonuria. Artif. Cells Blood Substit. Immobil. Biotechnol. 30, 243-257 https://doi.org/10.1081/BIO-120006117
  18. McHutchison, J. G, 1. M. Blatt, R. Ponnudurai, K. Goodarzi, J. Russell, and A Conrad. 1999. Ultracentrifugation and concentration of a large volume of serum for HCV RNA during treatment may predict sustained and relapse response in chronic HCV infection. J. Med. Virol. 57, 351-355 https://doi.org/10.1002/(SICI)1096-9071(199904)57:4<351::AID-JMV4>3.0.CO;2-V
  19. Medical Research Council (UK). 1993. Phenylketonuria due to phenylalanine hydroxylase deficiency: an unfolding story. BMJ 306, 115-119 https://doi.org/10.1136/bmj.306.6870.115
  20. Moats, R. A, R. Koch, K. Moseley, P. Guldberg, F. GuttIer, R. G Boles, and M. D. Nelson. 2000. Brain phenylalanine concentration in the management of adults with phenylketonuria. J. Inherit. Metab. Dis. 23, 7-14 https://doi.org/10.1023/A:1005638627604
  21. Rao, P. V., K. Moore, and G H. Towers. 1967. Degradation of aromatic amino acids by fungi. II. Purification and properties of phenylalanine ammonia-lyase from Ustilago hordei. Can. J. Biochem. 45, 1863-1872 https://doi.org/10.1139/o67-219
  22. Report of Medical Research Council Working Party on Phenylketonuria. 1993. Recommendations on the dietary management of phenylketonuria. Arch. Dis. Child 68, 426-427 https://doi.org/10.1136/adc.68.3.426
  23. Sarkissian, C. N., D. M. Boulais, J. D. McDonald, and C. R. Scriver. 2000. A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol. Genet. Metab. 69, 188-194 https://doi.org/10.1006/mgme.2000.2974
  24. Sarkissian, C. N., Z. Shao, F. Blain, R. Peevers, H. Su, R. Heft, T. M. Chang, and C. R. Scriver. 1999. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia-lyase. Proc. Natl. Acad. Sci. (USA) 96, 2339-2344 https://doi.org/10.1073/pnas.96.5.2339