DOI QR코드

DOI QR Code

조팝나무의 유전적 다양성과 집단구조 분석을 위한 ISSR 분석

Genetic Diversity and Population Structure of Spiraea prunifolia for. simpliciflora by Inter-Simple Sequence Repeats

  • 허만규 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • 발행 : 2009.09.30

초록

조팝나무는 목본이며 약용으로 매우 중요하며 우리나라 산림청 지정 보호수종이다. 이 속내 7집단에서 85개체에 대해 ISSR (inter simple sequence repeats) 마커로 이들 집단에 대한 유전적 변이와 집단구조를 조사하였다. 65개의 다형성 좌위와 78개 ISSR 유전자형을 얻었다. 덕유산 집단과 능동산 집단에는 1개체 이상 공유하는 유전자형이 포함되어 있었다. 전체 유전적 다양도는 종수준과 집단수준에서 각각 0.293과 0.183이였다. 집단의 분화($G_{ST}$)는 0.373으로 나타났다. 따라서 전체 변이의 37.3%는 집단 간에 있었다. ISSR 마커로 한국 내 조팝나무 집단의 분화는 잘 분리되어 ISSR로 조팝나무 집단 연구에 유익하며 유전적 다양도와 집단구조의 통찰은 종보전에 대한 기초 정보로 활용할 수 있을 것으로 사료된다.

85 individual Spiraea prunifolia for. simpliciflora (Rosaceae) were sampled to examine the genetic diversity and population structure of S. prunifolia for. simpliciflora populations. Inter-simple sequence repeats (ISSR) produced 65 polymorphic loci and identified 78 ISSR genotypes. Three multilocus genotypes were shared by more than one plant within a population. Total genetic diversity values ($H_T$) and inter-locus variation in the within-population genetic diversity ($H_S$) were 0.293 and 0.183, respectively. On a per-locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) was 0.373. This indicated that about 37.3% of the total variation was among populations. ISSR markers are very effective in classifying natural population levels of S. prunifolia for. simpliciflora in Korea. In addition, insights into the relative gene diversity among and within populations of S. prunifolia for. simpliciflora would be useful in plant breeding and also for the development of strategies for ex situ conservation of plant genetic resources.

키워드

참고문헌

  1. Condit, Rand S. P. Hubbell. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34, 66-71 https://doi.org/10.1139/g91-011
  2. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle
  3. Ge, X. J. and M. Sun. 1999. Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrtinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis. Mol. Ecol. 8, 2061-2069 https://doi.org/10.1046/j.1365-294x.1999.00821.x
  4. Gupta, M., Y. S. Chyi, J. Romero-Severson, and J. 1. Owen. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998-1006
  5. Hamada, H. and T. Kakunaga. 1982. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298, 396-398 https://doi.org/10.1038/298396a0
  6. Hamrick, J. 1. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. 1. Kahler, and B. S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Associates, Sunderland, MA
  7. Hedrick, P. W. 1998. Maintenance of genetic polymorphism: spatial selection and self-fertilization. Am. Nat. 152, 145-150 https://doi.org/10.1086/286155
  8. Huh, M. K 1999. Genetic diversity and population structure of Korean Alder (Alnus japonica: Betulaceae). Can. J. For. Res. 29, 1311-1316 https://doi.org/10.1139/cjfr-29-9-1311
  9. Huh, M. K, S. Y. Lee, and H. W. Huh. 2008. A taxonomic study of the genus Spiraea in Korea using sequences of ITS. J. Life Sci. 18, 694-700
  10. Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94, 597-602 https://doi.org/10.1007/s001220050456
  11. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  12. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 74, 5267-5273
  13. Newton, A. C., T. Allnutt, A. C. M. Gillies, A. Lowe, and R A. Ennos. 1999. Molecular phylogeography, interspecific variation and the conservation of tree species. Trends Ecol. Evol. 14, 140-145 https://doi.org/10.1016/S0169-5347(98)01555-9
  14. Parks, J. C. and C. R Werth. 1993. A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am. J. Bot. 80, 537-544 https://doi.org/10.2307/2445369
  15. Potter, D., S. M. Still, T. Grebenc, D. Ballian, G. Bozic, J. Franjiae, and H. Kraigher. 2007. Phylogenetic relationships in tribe Spiraceae (Rosaceae) inferred from nucleotide sequence data. Pl. Syst. Evol. 266, 105-118 https://doi.org/10.1007/s00606-007-0544-z
  16. Rossetto, M., G. Jezeierski, S. D. Hopper, and K W. Dixon. 1999. Conservation genetics and clonality in two critically endangered eucalypts from the highly endemic south-western Australian flora. Biol. Conser. 88, 321-331 https://doi.org/10.1016/S0006-3207(98)00119-0
  17. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425 https://doi.org/10.1093/molbev/msl072
  18. Salimath, S. S., A. C. De Oliveira, I. D. Godwin, and J. 1. Bennetzen. 1995. Assessment of genomic origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38, 757-763 https://doi.org/10.1139/g95-096
  19. Schlotterer, C. 1998. Are microsatellites really simple sequences? Curro BioI. 8, 132-134 https://doi.org/10.1016/S0960-9822(98)70989-3
  20. Tautz, D. 1989. Hypervariability of simple-sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17, 6463-6471 https://doi.org/10.1093/nar/17.16.6463
  21. Tsumura, Y., K Ohba, and S. H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet. 93, 40-45
  22. Van Treuren, R, R Bijlsma, W. van Delden, and N. J. Ouborg. 1991. The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66, 181-189 https://doi.org/10.1038/hdy.1991.23
  23. Wolfe, A. D. and A. Liston. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology, pp. 43-86, In Soltis, P. S., D. E. Soltis, and J. J. Doyle (eds.), Molecular Systematics of Plants: DNA sequencing, Kluwer, New York, USA
  24. Wolfe, A. D., Q. Y. Xiang, and S. R Kephart. 1998. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter-simple sequence repeat (ISSR) bands. Mol. Ecol. 7, 1107-1126 https://doi.org/10.1046/j.1365-294x.1998.00425.x
  25. Woo, M. H. E. H. Lee/S. O. Chung, and C. W. Kim. 1996. Constituents of Spiraea prunifolia var. simpliciflora. Nat. Prod. Sci. 27, 389-396
  26. Yeh, F. C., R C. Yang, T. J. Botle, Z. H. Ye, and J. X. Mao. 1997. POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada
  27. Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183 https://doi.org/10.1006/geno.1994.1151