Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells

5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과

  • Published : 2009.08.31

Abstract

Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

Keywords

References

  1. Kim, D. W., Bang, Y. J., Heo, D. S. and Kim, N. K. : Colon cancer in Korea: characteristics and trends. Tumori 88, 262 (2002)
  2. Poon, M. A., O'Connell, M. J., Moertel, C. G., Wieand, H. S., Cullinan, S. A., Everson, L. K., Krook, J. E., Mailliard, J. A., Laurie, J. A. and Tschetter, L. K. : Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J. Clin. Oncol. 7, 1407 (1989) https://doi.org/10.1200/JCO.1989.7.10.1407
  3. Santi, D. V., McHenry, C. S. and Sommer, H. : Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 13, 471 (1974) https://doi.org/10.1021/bi00700a012
  4. Violette, S., Poulain, L., Dussaulx. E., Pepin, D., Faussat, A. M., Cahambaz, J., Lacorte, J. M., Staedel, C. and Lesuffleur, T. : Resistance of colon cancer cells to long-term 5-flurouracil exposure is correlated to the relative level of Bcl-2 and Bcl- X(L) in addition to Bax and p53 status. Int. J. Cancer 98, 498 (2002) https://doi.org/10.1002/ijc.10146
  5. Zhang, Y. Q., Tang, X. Q., Sun, L., Dong, L., Qin, Y., Liu, H. Q., Xia, H. and Cao, J. G. : Rosiglitazone enhances fluorouracilinduced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor gamma. World J. Gastroenterol. 13, 1534 (2007) https://doi.org/10.3748/wjg.v13.i10.1534
  6. Kim, M. Y., Son, J. K., Lee, S. K. and Kuh, H. J. : Combinatorial effect of 5-FU and epigenetic silencing repressors in human colorectal cancer cells. Yakhak Hoeji 49, 511 (2005)
  7. Kanda, T., Tada, M., Imazeki, F., Yokosuka, O., Nagao, K. and Saisho, H. : 5-aza-2'-deoxycytidine sensitizes hepatoma and pancreatic cancer cell lines. Oncol. Rep. 14, 975 (2005)
  8. Kessinger, M. A., Foley, J. F. and Lemon, H. M. : Adriamycin, mitomycin C, and 5-fluorouracil in combination for advanced colorectal adenocarcinoma previously treated with 5-fluorouracil. Cancer. Clin. Trials 2, 317 (1979)
  9. Szolcsanyi, J. and Bartho, L. : Capsaicin-sensitive afferents and their role in gastroprotection: an update. J. Physiol. Paris 95, 181 (2001) https://doi.org/10.1016/S0928-4257(01)00023-7
  10. Szolcsanyi, J. and Bartho, L. : Capsaicin-sensitive afferents and their role in gastroprotection: an update. J. Physiol. Paris 95, 181 (2001) https://doi.org/10.1016/S0928-4257(01)00023-7
  11. Surh, Y. J., Lee, E. and Lee, J. M. : Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat. Res. 402, 259 (1998) https://doi.org/10.1016/S0027-5107(97)00305-9
  12. Kim, J. D., Kim, J. M., Pyo, J. O., Kim, S. Y., Kim, B. S., Yu, R. and Han, I. S. : Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett. 120, 235 (1997) https://doi.org/10.1016/S0304-3835(97)00321-2
  13. Lee, Y. S., Nam, D. H. and Kim, J. A. : Induction of apoptosis by capsaicin in A172 human glioblastoma cells. Cancer Lett. 161, 121 (2000) https://doi.org/10.1016/S0304-3835(00)00608-X
  14. Lee, Y. S., Kwon, E. J., Jin da, Q., Park, S. H., Kang, Y. S., Huh, K. and Kim, J. A. : Redox status-dependent regulation of cyclooxygenases mediates the capsaicin-induced apoptosis in human neuroblastoma cells. Environ. Pathol. Toxicol. Oncol. 21, 113 (2002)
  15. Kim, C. S., Park, W. H., Park, J. Y., Kang, J. H., Kim, M. O., Kawada, T., Yoo, H., Han, I. S. and Yu, R. : Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT- 29 human colon cancer cells. J. Med. Food 7, 267 (2004) https://doi.org/10.1089/jmf.2004.7.267
  16. Sarraf, P., Mueller, E., Jones, D., King, F. J., DeAngelo, D. J., Partridge, J. B., Holden, S. A., Chen, L. B., Singer, S., Fletcher, C. and Spiegelman, B. M. : Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat. Med. 4, 1046 (1998) https://doi.org/10.1038/2030
  17. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E. and Dixit, V. M. : FLICE, a novel FADD-homologus ICE/CED-3-like protease, is recruited to the CD95(Fas/APO-1) death-inducing signaling complex. Cell 85, 817 (1996) https://doi.org/10.1016/S0092-8674(00)81266-0
  18. Zhou, Q., Snipas, S., Orth, K., Muzio, M., Dixit, V. M. and Salvesen, G. S. : Target protease specificity of the viral serpin CrmA. Analysis of five caspases. J. Biol. Chem. 272, 7797 (1997) https://doi.org/10.1074/jbc.272.12.7797