Antioxidative Properties of Sachil-Tang Extract

  • Yi, Hyo-Seung (Department of Acupoint, College of Oriental Medicine, Dongguk University) ;
  • Moon, Jin-Young (Department of Acupoint, College of Oriental Medicine, Dongguk University)
  • Published : 2009.08.25

Abstract

Sachil-Tang (SCT) has been traditionally used as a prescription of spasm of the esophagus by stress, pectoralgia and oppressive feeling of the chest in Oriental medicine. This study was carried out to investigate the antioxidant activities of the ethanol extract of SCT and its inhibitory effect on intracellular oxidation and vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells (HUVECs) using various methods. The SCT extract showed a strong inhibitory effect on free radical generating model systems, including DPPH radical, superoxide anions, hydroxyl radical, peroxynirite and nitric oxide. Besides, the SCT extract exhibited a strong inhibitory effect on lipid peroxidation in rat liver homogenate induced by $FeCl_2$-ascorbic acid, and protected plasmid DNA against the strand breakage in a Fenton's reaction system. The SCT extract also inhibited copper-mediated oxidation of human low-density lipoprotein (LDL), and repressed relative electrophoretic mobility of LDL. Furthermore, the SCT extract protected intracellular oxidation induced by various free radical generators and inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. These results suggest that SCT can be an effective natural antioxidant and a possible medicine of atherosclerosis.

Keywords

References

  1. Hur, J. Dongeuibogam. Seoul, Bupin Publishing. pp 639-663, 1999
  2. Choi, E.J., Lee, I.S. Effect of SACHIL-TANG on the plasma and uterus changes of rats in immobilization stress. The Journal of Oriental Gynecology 13(1):447-468, 2000
  3. Jung, B.M., Jin, C.S. A Study on prescriptions and single herb for treatment of vomiting during pregnancy. The Journal of Oriental Gynecology 13(2):370-398, 2000
  4. Yoo, H.J. Sclerosis of arteries. Monthly Korea Forum 142(1):166-169, 2001
  5. Minuz, P., Fava, C., Lechi, A. Lipid peroxidation, isoprostanes and vascular damage. Pharmacol Rep. 58: 57-68, 2006
  6. Dandona, P., Ghanim, H., Brooks, D.P. Antioxidant activity of carvedilol in cardiovascular disease. J. Hypertens. 25: 731-741, 2007 https://doi.org/10.1097/HJH.0b013e3280127948
  7. Trostchansky, A., Batthyany, C., Botti, H., Radi, R., Denicola, A. and Rubbo, H. Formation of lipid-protein adducts in low-density lipoprotein by fluxes of peroxynitrite and its inhibition by nitric oxide. Arch. Biochem. Biophys. 395: 225-232, 2001 https://doi.org/10.1006/abbi.2001.2583
  8. Asmis, R., Begley, J.G., Jelk, J., Everson, W.V. Lipoprotein aggregation protects human monocyte-derived macrophages from OxLDL-induced cytotoxicity. J. Lipid. Res. 46: 1124-1132, 2005 https://doi.org/10.1194/jlr.M400485-JLR200
  9. de Vries, H.E., Buchner, B., van Berkel, T.J., Kuiper, J. Specific interaction of oxidized low-density lipoprotein with macrophage-derived foam cells isolated from rabbit atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 19: 638-645, 1999 https://doi.org/10.1161/01.ATV.19.3.638
  10. Tabata, T., Mine, S., Kawahara, C., Okada, Y., Tanaka, Y. Monocyte chemoattractant protein-1 induces scavenger receptor expression and monocyte differentiation into foam cells. Biochem. Biophys. Res. Commun. 305: 380-385, 2003 https://doi.org/10.1016/S0006-291X(03)00771-X
  11. Wang, Z., Castresana, M.R., Newman, W.H. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 285: 669-674, 2001 https://doi.org/10.1006/bbrc.2001.5232
  12. Moon, S.K., Thompson, L.J., Madamanchi, N., Ballinger, S., Papaconstantinou, J., Horaist, C., Runge, M.S., Patterson, C. Aging, oxidative responses, and proliferative capacity in cultured mouse aortic smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 280: 2779-2788, 2001 https://doi.org/10.1152/ajpheart.2001.280.6.H2779
  13. Luczak, K., Balcerczyk, A., Soszynski, M., Bartosz, G. Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol. Int. 28: 483-486, 2004 https://doi.org/10.1016/j.cellbi.2004.03.004
  14. Rong, Y., Geng, Z., Lau, B.H. Ginko biloba attenuates oxidative stress in macrophages and endothelial cells. Free Radic. Biol. Med. 20: 121-127, 1996 https://doi.org/10.1016/0891-5849(95)02016-0
  15. Stein, O., Thiery, J., Stein, Y. Is there a genetic basis for resistance to atherosclerosis? Atherosclerosis 160: 1-10, 2002
  16. Mo, S.J., Son, E.W., Lee, S.R., Lee, S.M., Shin, D.H., Pyo, S. CML-1 inhibits TNF-$\alpha$-induced NF-$\kappa$B activation and adhesion molecule expression in endothelial cells through inhibition of I$\kappa$B$\alpha$ kinase. J. Ethnopharmacol. 109: 78-86, 2007 https://doi.org/10.1016/j.jep.2006.07.006
  17. Hafeman, D.G., Hoekstra, W.G. Lipid peroxidation in vivo during vitamin E and selenium deficiency in the rat as monitored by ethane evolution. J. Nutr. 107: 666-672, 1977 https://doi.org/10.1093/jn/107.4.666
  18. Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 344(8924):721-724, 1994 https://doi.org/10.1016/S0140-6736(94)92211-X
  19. Suarna, C., Wu, B.J., Choy, K., Mori, T., Croft, K., Cynshi, O., Stocker, R. Protective effect of vitamin E supplements on experimental atherosclerosis is modest and depends on preexisting vitamin E deficiency. Free Radic. Biol. Med. 41: 722-730, 2006 https://doi.org/10.1016/j.freeradbiomed.2006.05.013
  20. Baskol, G., Atmaca, H., Tanrıverdi, F., Baskol, M., Kocer, D., Bayram, F. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp. Clin. Endocrinol. Diabetes 115(8):522-526, 2007 https://doi.org/10.1055/s-2007-981457
  21. Gyamfi, M.A., Yonamine, M., Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana. Gen. Pharmacol. 32: 661-667, 1999 https://doi.org/10.1016/S0306-3623(98)00238-9
  22. Gotoh, N., Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta. 1115: 201-207, 1992 https://doi.org/10.1016/0304-4165(92)90054-X
  23. Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: an overview. Method Enzymol. 186: 1-85, 1990 https://doi.org/10.1016/0076-6879(90)86093-B
  24. Nagata, N., Momose, K., Ishida, Y. Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J. Biochem.(Tokyo) 125: 658-661, 1999 https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  25. Kooy, N.W., Royall, J.A. Ischiropulos, H., Beckman, J.S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radical Biol. Med. 16: 149-156, 1994 https://doi.org/10.1016/0891-5849(94)90138-4
  26. Patro, B.S., Bauri, A.K., Mishra, S. Chattopadhyay, S. Antioxidant activity of Myristica malabarica extracts and their constituents. J. Agric. Food Chem. 53: 6912-6918, 2005 https://doi.org/10.1021/jf050861x
  27. Lee, J.C., Kim, H.R., Kim, J., Jang, Y.S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. Saboten. J. Agric. Food Chem. 50: 6490-6496, 2002 https://doi.org/10.1021/jf020388c
  28. Xu, M.Z., Lee, W.S., Han, J.M., Oh, H.W., Park, D.S., Tian, G.R., Jeong, T.S., Park, H.Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bioorg. Med. Chem. 14: 7826-7834, 2006 https://doi.org/10.1016/j.bmc.2006.07.063
  29. Yoon, M.A., Jeong, T.S., Park, D.S., Xu, M.Z., Oh, H.W., Song, K.B., Lee, W.S., Park, H.Y. Antioxidant effect of quinoline alkaloid and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol. Pharm. Bull. 29(4):735-739, 2006 https://doi.org/10.1248/bpb.29.735
  30. Singleton, V.L. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv. Food Res. 27: 149-242, 1981
  31. Wang, H., Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27: 612-616, 1999 https://doi.org/10.1016/S0891-5849(99)00107-0
  32. Habib, A., Creminon, C., Frobert, Y., Grassi, J., Pradelles, P., Maclouf, J. Demonstration of an inducible cyclooxygenase in human endothelial cells using antibodies raised against the carboxyl-terminal region of the cyclooxygenase-2. J. Biol. Chem. 268(31):23448-23454, 1993
  33. Hussain, S.P., Hofseth, L.J., Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer. 3(4):276-285, 2003 https://doi.org/10.1038/nrc1046
  34. Violi, F., Cangemi, R. Antioxidants and cardiovascular disease. Curr. Opin. Investig. Drugs. 6(9):895-900, 2005
  35. Basaga, H.S. Biochemical aspects of free radicals. Biochem. Cell Biol. 68(7-8):989-998, 1990 https://doi.org/10.1139/o90-146
  36. Ahmad, R., Ali, A.M., Israf, D.A., Ismail, N.H., Shaari, K., Lajis, N.H. Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sci. 76(17):1953-1964, 2005 https://doi.org/10.1016/j.lfs.2004.08.039
  37. Jo, Y., Kim, M., Shin, M.H., Chung, H.Y., Jung, J.H., Im, K.S. Antioxidative phenolics from the fresh leaves of Ternstroemia japonica. J. Nat. Prod. 69: 1399-1403, 2006 https://doi.org/10.1021/np060096w
  38. Nageswara, R.M., Aleksandr, V., Marschall, S.R. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25: 29-38, 2005
  39. Kujala, T.S., Loponen, J.M., Klika, K.D., Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compound. J. Agric. Food Chem. 48: 5338-5342, 2000 https://doi.org/10.1021/jf000523q
  40. Wassmann, S., Wassmann, K., Nickenig, G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44: 381-386, 2004 https://doi.org/10.1161/01.HYP.0000142232.29764.a7
  41. Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J.H., Skatchkov, M., Heitzer, T., Stasch, J.P., Griendling, K.K., Harrison, D.G., Bohm, M., Meinertz, T., Munzel, T. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99: 2027-2033, 1999 https://doi.org/10.1161/01.CIR.99.15.2027
  42. Madamanchi, N.R., Hakim, Z.S., Runge, M.S. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. Thrombosis and Haemostasis 3: 254-267, 2004
  43. Lindqvist, C. and Nordstrom, T. Generation of hydroxyl radicals by the antiviral compound phosphonoformic acid (foscarnet). Pharmacol. Toxicol. 89: 49-55, 2001 https://doi.org/10.1034/j.1600-0773.2001.d01-135.x
  44. Badisa, V.L., Latinwo, L.M., Odewumi, C.O., Ikediobi, C.O., Badisa, R.B., Ayuk-Takem, L.T., Nwoga, J., West, J. Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ. Toxicol. 22: 144-151, 2007 https://doi.org/10.1002/tox.20248
  45. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., Moncada, S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 281: 419-424, 1992 https://doi.org/10.1042/bj2810419
  46. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 81: 3883-3887, 1984 https://doi.org/10.1073/pnas.81.12.3883
  47. Yla-Herttuala, S., Palinski, W., Rosenfeld, M.E., Parthasarathy, S., Carew, T.E., Butler, S., Witztum, J.L., Steinberg, D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J. Clin. Invest. 84: 1086-1095, 1989 https://doi.org/10.1172/JCI114271
  48. Holvoet, P., Collen, D. beta-VLDL hypercholesterolemia relative to LDL hypercholesterolemia is associated with higher levels of oxidized lipoproteins and a more rapid progression of coronary atherosclerosis in rabbits. Arterioscler. Thromb. Vasc. Biol. 17: 2376-2382, 1997 https://doi.org/10.1161/01.ATV.17.11.2376
  49. Ioannides, C., Yoxall, V. Antimutagenic activity of tea: role of polyphenols. Curr. Opin. Clin. Nutr. Metab. Care 6: 649-656, 2003 https://doi.org/10.1097/00075197-200311000-00008
  50. Khan, B.V., Parthasarathy, S.S., Alexander, R.W., Medford, R.M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest. 95: 262-270, 1995
  51. Joris, I., Zand, T., Nunnari, J.J., Krolikowski, F.J., Majno, G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am. J. Pathol. 113(3):341-358, 1983
  52. Voraberger, G., Schafer, R., Stratowa, C. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5'-regulatory region. Induction by cytokines and phorbol ester. J. Immunol. 147(8):2777-2786, 1991
  53. Schreck, R., Rieber, P., Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10(8):2247-2258, 1991