DOI QR코드

DOI QR Code

Enhancement of Aerosol Concentration in Korea due to the Northeast Asian Forest Fire in May 2003

  • In, Hee-Jin (Forecast Bureau, Korea Meteorological Administration) ;
  • Kim, Yong-Pyo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Kwon-H. (Earth System Science Interdisciplinary Center (ESSIC), University of Maryland)
  • Received : 2009.03.09
  • Accepted : 2009.05.27
  • Published : 2009.06.30

Abstract

Enhancement of aerosol optical thickness (AOT) and surface aerosol mass concentration in Korea for an active forest fire episode in Northeast Asia were estimated by Community Multi-scale Air Quality (CMAQ) model. MODIS/TERRA remote detects of fires in Northeast Asia for May 2003 gave a constraint for estimation of wildfire emissions with an NDVI distribution for recent five years. The simulated wildfire plumes and enhancement of AOT were evaluated and well resolved by comparing multiple satellite observations such as MODIS, TOMS, and others. Scatter plots of observed daily mean aerosol extinction coefficient versus $PM_{10}$ concentration in ground level in Korea showed distinctively different trends based on the ambient relative humidity.

Keywords

References

  1. Andreae M.O. and P. Merlet (2001) Emissions of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955-966. https://doi.org/10.1029/2000GB001382
  2. Arino O. and J. Rosaz (1999) 1997 and 1998 world ATSR fire atlas using ERS-2 ATSR-2 data, In Proceedings of the Joint Fire Science Conference, Boise, pp. 15-17.
  3. Barbosa P.M., D. Stroppiana, J.-M. Gregoire, and J.M.C. Pereira (1999) An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13(4), 933-950. https://doi.org/10.1029/1999GB900042
  4. Byun D.W. and J.K.S. Ching, Eds. (1999) Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA/600/R-99/030, NERL, Research Triangle Park, NC, USA.
  5. Byun D.W., S.T. Kim, F.Y. Cheng, S.B. Kim, A. Cuclis, and N.K. Moon (2003) Information infrastructure for air quality modeling and analysis: Application to the Houson-Galveston Ozone non-attainment area. J. Environ. Informa., 2(2), 38-57.
  6. Byun D.W. and K.L. Schere (2006) Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59(2), 51-77. https://doi.org/10.1115/1.2128636
  7. Damoah R., N. Spichtinger, C. Forster, P. James, I. Mattis, U. Wandinger, S. Beirle, T. Wagner, and A. Stohl (2004) Around the world in 17 days-hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys., 4, 1311-1321. https://doi.org/10.5194/acp-4-1311-2004
  8. Grell G.A., J. Dudhia, and D.R. Stauffer (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), NCAR Technical Note, NCAR/ TN-397+IA, 114.
  9. In H.-J. and S.-U. Park (2002) A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmos. Environ., 36(26), 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  10. In H.-J., D.W. Byun, R.J. Park, N.-K. Moon, S. Kim, and S. Zhong (2007) Impact of transboundary transport of carbonaceous aerosols on the regional air quality in the United States: A case study of the South American wildland fire of May 1998. J. Geophys. Res., 112, D07201, doi:10.1029/2006JD007544.
  11. Jaffe D., I. Bertschi, L. Jaegle, P. Novelli, J.S. Reid, H. Tanimoto, R. Vingarzan, and D.L. Westphal (2004) Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys. Res. Lett., 31, L16106, doi: 10.1029/2004GL020093.
  12. Kaufman Y.J., C.O. Justice, L.P. Flynn, J.D. Kendall, E.M. Prins, L. Giglio, D.E. Ward, P. Menzel, and A.W. Setzer (1998) Potential global fire monitoring from EOS-MODIS. J. Geophys. Res., 103(D24), 32215- 32238. https://doi.org/10.1029/98JD01644
  13. Lee K.H., J.E. Kim, Y.J. Kim, J.H. Kim, and W. von Hoyningen-Huene (2005) Impact of the smoke aerosols from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmos. Environ., 39(1), 85-99. https://doi.org/10.1016/j.atmosenv.2004.09.032
  14. Levine J.S., W.R. Cofer, D.R. Cahoon, and E.L. Winstead (1995) Biomass burning: A driver for global change. Environ. Sci. and Tech., 29(3), 120A-125A.
  15. Malm W.C., J.F. Sisler, D. Huffmans, R.A. Eldred, and T.A. Cahill (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99(D1), 1347-1370. https://doi.org/10.1029/93JD02916
  16. Malm W.C., D.E. Day, S.M. Kreidenweis, J.L. Collett, Jr., C.M. Carrico, G. McMeeking, and T. Lee (2005) Hygroscopic growth properties of an organic-laden aerosol. Atmos. Environ., 39(27), 4969-4982. https://doi.org/10.1016/j.atmosenv.2005.05.014
  17. Pitchford M.L. and W.C. Malm (1994) Development and applications of a standard visual index. Atmos. Environ., 28(5), 1049-1054. https://doi.org/10.1016/1352-2310(94)90264-X
  18. Seiler W. and P.J. Crutzen (1980) Estimates of gross and net fluxed of carbon between the biosphere and the atmosphere from biomass burning. Climate Change, 2(3), 207-247. https://doi.org/10.1007/BF00137988
  19. Streets D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.

Cited by

  1. Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions vol.98, pp.2, 2009, https://doi.org/10.1016/j.atmosres.2010.09.009
  2. Wind-blown dust and its impacts on particulate matter pollution in Northern China: current and future scenarios vol.16, pp.11, 2009, https://doi.org/10.1088/1748-9326/ac31ec