DOI QR코드

DOI QR Code

The Physicochemical Stabilities and Biological Activities of Pigment Extract from Marine Bacterium Pseudoalteromonas psicida TA20

해양세균 Pseudoa/teromonas psicida TA20의 색소 추출물의 물리화학적 안정성과 생리활성

  • 박진숙 (한남대학교 생명공학과) ;
  • 정동우 (한남대학교 생명공학과) ;
  • 강명희 (한남대학교 식품영양학과)
  • Published : 2009.08.30

Abstract

We investigated the physicochemical stabilities and biological activities of ethanol- extracted pigment from marine bacterium Pseudoalteromonas psicida TA20. This bacterial pigment was very stable at a pH range of between 4.0 and 8.0 at a temperature below $40^{\circ}C$. In the presence of light, the pigment was also very stable, showing more than 90 percent remaining absorbance during 14 days at $25^{\circ}C$. The stability of the pigment, when metal ions were present, showed higher stability in all examined metal ions except for $Al^{3+}$ and $Cu^{2+}$, especially in the presence of $Fe^{2+}$. This pigment showed higher stability than other pigment extracts reported. The pigment has free-radical scavenging (3,495 ${\mu}g/ml$) activity and 44% antioxidant protective effect against DNA damage of human lymphocyte cells at a concentration of 10 ${\mu}g/ml$. The results indicate that the bacterial pigment produced a significant reduction in oxidative DNA damage. The pigment also showed antimicrobial activity against major food poisoning bacteria. Therefore, these results suggest that this bacterial pigment could be used as a natural colorant in the food industry, having the advantages of antioxidant and antimicrobial activities.

해양세균 Pseudoalteromonas psicida TA20의 ethanol 색소 추출물에 대한 안정성과 기능성을 검토한 결과, 본 해양세균 색소는 pH 4.0에서 pH 8.0의 조건과 $40^{\circ}C$ 이하에서 매우 안정하였으며, $25^{\circ}C$ 14일간 90% 이상의 잔존율을 나타내어 빛에 대한 안정성이 매우 우수한 것으로 나타났다. 금속이온의 경우 $Al^{3+}$$Cu^{2+}$를 제외한 실험된 모든 금속이온에 대하여 매우 안정하였으며 특히, 다른 색소추출물들에 비해 $Fe^{2+}$에 대한 안정성이 높은 것으로 나타났다. 해양세균 색소추출물에 대한 생리활성 실험 결과, free radical 소거 활성 (3495 ${\mu}g/ml$)이 나타났으며, 색소농도 10 ${\mu}g/ml$일 때 44%의 인체세포 DNA 손상 회복능이 있음을 보여 항산화능이 우수함을 알 수 있었다. 또한 주요 식품유해세균에 대하여 항균활성을 나타내었다. 따라서 본 해양세균 색소는 항산화능과 항균활성을 갖는 식품 색소로의 적용을 검토할 수 있을 것으로 기대된다.

Keywords

References

  1. Ahn, D. K., T. W. Han, H. Y. Shin, I. N. Jin, and S. Y. Ghim. 2003. Diversity and antibacterial activity of lactic acid bacteria isolated from Kimchi. Kor. J. Microbiol. Biotechnol. 31, 191-196
  2. Bae, S. J., K. H. Kim, B. W. Kim, and Y. H. Kim. 1995. Isolation and characterization of Azotobacter vinelandii strain A80 producing water-soluble blue pigment. J. Appl. Microbiol. Biotechnol. 23, 43-46
  3. Choi, B. D. and Y. K. Jeong. 1997. The Stability of carotenoids extracted from halophilic bacteria. J. Korean Soc. Food Sci. Nutr. 28, 1405-1407
  4. Costa, I., H. L. Martelli, I. M. da Silva, and D. Pomeroy. 1978. Production of β-carotene by a Rhodotorula strain. Biotechnol. Lett. 9, 373-375 https://doi.org/10.1007/BF01025808
  5. Imada, K., M. Oshima, T. Yoshida, S. Yasuda, and S. Yoshino. 1983. Evaluation of neopurpuratin, a purplish-red substance produced by microorganism, as food colors. Nippon Shokuhin Kogyo Gakkaishi. 30, 270 https://doi.org/10.3136/nskkk1962.30.270
  6. Jeon, E. J., Y. K. Park, J. S. Kim, and M. H. Kang. 2004. Comparison of the protective effect of antioxidant vitamins and fruits or vegetable juices on DNA damage in human lymphocyte cells using the comet assay. J. Korean Nutri. 37, 440-447
  7. Jeon, T. W., Y. S. Cho, S. H. Lee, S. M. Cho, H. M. Cho, K. S. Chang, and H. J. Park. 2005. Studies on the biological activities and physicochemical characteristics of pigments extracted from Korean purple-fleshed potato. Korean J. food Sci. Technol. 37, 247-254
  8. Jeong, Y. G., B. D. Choi, S. J. Kang, S. H. Jeong, Y. K. Lee, H. Y. Kim, and M. J. Jung. 2001. Characteristic of carotenoid component from halophilic bacteria, Haloarcular sp. EH-1. The Institute of Marine Industry. J. Mol. Biol., 15, 673-675
  9. Jong, D. W. and J. S. Park. 2008. Characterization of pigment-producing Pseudoalteromonas spp. from marine habitats and their optimal conditions for pigment production. J. Life Sci. 18, 1752-1757 https://doi.org/10.5352/JLS.2008.18.12.1752
  10. Kim, E. Y. and M. R. Rhyu. 2008. Antimicrobial activities of Monascus koji extracts. Korean J. Sci. Technol. 40, 76-81
  11. Kim, H. J., H. J. Park, S. K. Bae, J. D. Kim, I. S. Kong, and J. Y. Kong. 1996. Characterization of red-pigment produced by marine bacterium Vibrio sp. J. Korean Soc. Food Nutr. 25, 294-300
  12. Kim, J. D., D. S. Kang, M. Y. Kim, S. B. Roh, M. R. Choi, S. H. Song, S. H. Baek, H. J. Seo, D. H. Kim, and J. Y. Kong. 2001. Production of carotenoid from halophilic Erythrobacter sp. and characterization of physiological properties. J. Korean Soc. Food Sci. Nutr. 30, 143-151
  13. Kim, M. H., T. K. Lee, and H. C. Yang. 1992. Red pigment production from Monascus anka abidus. Korean J. Food Sci. Technol. 24, 451-455
  14. Kim, Y. H. and S. S. Lee. 1994. A Study on Pigments from Rhodopila globiformis by Acetone Extraction : Stability of Red Pigments. J. Korean Soc. Food Nutr. 23, 25-29
  15. Kim, Y. H. and S. S. Lee. 1994. A Study of geenish pigments from Rhodopseudomonas viridis by aetone extraction: Characteristics of potential food clorant. Korean J. Food Sci. Technol. 26, 93-97
  16. Kim, Y. H. and S. S. Lee. 1993. Yellow Pigment from Rhodospirillum rubrum by acetone extraction. J. Korean Soc. Food Nutr. 6, 322-328
  17. Lee, E. J. and H. D. Jang. 2004. Antioxidant activity and protective effect of five edible mushrooms on oxidative DNA damage. Food Sci. Biotechnol. 13, 443-449
  18. Lee, H. J. and M. Y. Park. 2002. Antimicrobial characteristics of yellow-pigment produced by Monascus anka Y7. J. Korean. Soc. Food Sci. Nutr. 31, 338-342 https://doi.org/10.3746/jkfn.2002.31.2.338
  19. Lee, S. M., H. S. Kim, and T. S. Yu. 2003. The optimal condition for production of red pigment by Monascus anka on solid culture. J. Korean Soc. Food Sci. Nutr. 32, 155-160 https://doi.org/10.3746/jkfn.2003.32.2.155
  20. Lim, S. I. and E. J. Kwak. 2004. Stability of the pigments from Monascus purpureus CBS 281.34. J. Korean Soc. Food Sci. Nutr. 33, 711-715 https://doi.org/10.3746/jkfn.2004.33.4.711
  21. Nam, H. S. and J. S. Rhee. 1991. Effect of carbon source and carbon to nitrogen ratio on carotenogenesis of Rhodotorula glutinis. J. Microbiol. Biotechnol. 1, 75-78
  22. Margarita, T., P. T. Doulias, A. Barbouti, U. Brunk, and D. Galaris. 2005. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem. J. 387, 703-710 https://doi.org/10.1042/BJ20041650
  23. Park, S. J. and D. H. Oh. 2003. Free radical scavenging effect of seed and skin extracts of black olympic grape (Vitis labruscana L.). Korean J. Sci. Technol. 35, 121-124
  24. Park, S. J., B. K. Park, H. Y. Lee, J. H. Lee, J. D. Kim, and D. H. Oh. 2002. Biological activities of ethanol extract and fractions of black olympia grape (Vitis labruscana L.). Korean J. Food Preserv. 9, 338-344
  25. Park, Y. K., E. J. Jeon, and M. H. Kang. 2003. Protective effect of flavonoids on lymphocyte DNA damage using comet assay. Korean J. Nutr. 36, 125-132
  26. Ryu, B. H. and M. J. Kim. 2000. Production of red pigment from marine bacterium utilizing colloidal chitin. Kor. J. Microbiol. Biotechnol. 28, 264-269
  27. Scheuer, P. J. 1978. Marine natural products (5th ed.). Academic Press Incorporated. New York, USA
  28. Watanabe, I. 1989. Current topics in marine biotechnology, pp. 11, Fungi, Tech Press. Tokyo, Japan
  29. Yang, M.-O. and E.-J. Cho. 2006. Stability for rose petals igment as a food material. J. East Asian Soc. Dietary Life 16, 468-473

Cited by

  1. Characterization of carotenoid pigments from bacterial symbionts of soft-coral Sarcophyton sp. from North Java Sea vol.9, pp.1, 2017, https://doi.org/10.1007/s40071-017-0157-2