DOI QR코드

DOI QR Code

인간 A549 폐암세포에서 비스테로이드성 항염증제와 genistein의 복합처리에 의한 NAG-1 의존적 세포사멸 증진 효과

Combined Treatment of Nonsteroidal Anti-inflammatory Drugs and Genistein Synergistically Induces Apoptosis via Induction of NAG-1 in Human Lung Adenocarcinoma A549 Cells

  • 김초희 (부산대학교 자연과학대학 분자생물학과, 유전공학연구소) ;
  • 김민영 (부산대학교 자연과학대학 분자생물학과, 유전공학연구소) ;
  • 이수연 (부산대학교 자연과학대학 분자생물학과, 유전공학연구소) ;
  • 문지영 (부산대학교 자연과학대학 분자생물학과, 유전공학연구소) ;
  • 한송이 (조선대학교 의과대학 내성세포연구센터) ;
  • 박혜경 (한국나노바이오테크놀러지센터) ;
  • 강호성 (부산대학교 자연과학대학 분자생물학과, 유전공학연구소)
  • Kim, Cho-Hee (Department of Molecular Biology, College of Natural Sciences, and Research Institute of Genetic Engineering, Pusan National University) ;
  • Kim, Min-Young (Department of Molecular Biology, College of Natural Sciences, and Research Institute of Genetic Engineering, Pusan National University) ;
  • Lee, Su-Yeon (Department of Molecular Biology, College of Natural Sciences, and Research Institute of Genetic Engineering, Pusan National University) ;
  • Moon, Ji-Young (Department of Molecular Biology, College of Natural Sciences, and Research Institute of Genetic Engineering, Pusan National University) ;
  • Han, Song-Iy (Research Center for Resistant Cells, College of Medicine, Chosun University) ;
  • Park, Hye-Gyeong (Korea Nanobiotechnology Center, Pusan National University) ;
  • Kang, Ho-Sung (Department of Molecular Biology, College of Natural Sciences, and Research Institute of Genetic Engineering, Pusan National University)
  • 발행 : 2009.08.30

초록

비스테로이드성 항염증약(nonsteroidal anti-inflammatory drugs; NSAIDs)은 항염 및 진통효과를 나타내며, 염증억제 외에 다양한 신호전달 분자를 통해 여러 가지 세포생리활성을 조절하며, 암세포에서는 세포사멸 유도를 통한 항암제 효과를 보이고 있다. 본 연구에서는 NSAIDs가 암세포사멸프로그램을 작동시키는데 있어 phosphatidyl inositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) 그리고 MEK1/2-ERK1/2 신호 전달계과 같은 anti-apoptotic program이 NSAIDs의 효과를 경감시키는 것으로 예상하고, 이들 항세포사멸 프로그램을 억제하였을 경우, NSAIDs의 세포사멸 유도작용이 증가되는지 그 가능성을 조사하였다. 세포사멸은 Hoeschst 33342으로 핵응축과 핵 쪼개짐을 염색하여 확인하였다. Western blotting을 통해 단백질 발현과 역전사중합효소연쇄반응을 통해 mRNA 발현을 확인하였다. NSAIDs 처리와 동시에 PI3K-Akt/PKB와 MEK-ERK1/2 신호전달계의 억제제를 함께 처리했을 때, NSAIDs의 세포사멸유도작용이 증가함을 확인하였다. 또한 PI3K와 MEKl/2 신호전달계의 상위에 존재하는 receptor tyrosine kinases (RTKs)의 억제제인 genistein을 함께 처리하였을 때에도 유사한 효과가 나타남을 확인하였다. 그리고 이들 복합처리에 의해 NAG-1 발현이 증가하며 NAG-1 interference 하였을 경우 복합처리에 의한 세포사멸증진 효과가 사라짐을 확인하였다. 본 연구결과는 암세포에 활성화 되어 있는 세포생존프로그램을 제어하는 물질(genistein 혹은 LY294002+U0126)을 복합처방함으로써 NSAIDs의 항암작용을 증진시킬 수 있음을 보여준다.

A number of studies have demonstrated that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the risks of colorectal, oesophageal and lung cancers. NSAIDs have been shown to exert their anti-cancer effects through inducing apoptosis in cancer cells. The susceptibility of tumor cells to anti-tumor drug-induced apoptosis appears to depend on the balance between pro-apoptotic and anti-apoptotic programs such as nuclear factor kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) and MEK1/2-ERK1/2 pathways. We examined the effects of pro-survival PI3K and ERK1/2 signal pathways on cell cycle arrest and apoptosis in response to NSAIDs including sulindac sulfide and NS398. We show that simultaneous inhibition of the Akt/PKB and ERK1/2 signal cascades could synergistically enhance the potential pro-apoptotic activities of sulindac sulfide and NS398. Similar enhancement was observed in cells treated with sulindac sulfide or NS398 and 100 ${\mu}$M genistein, an inhibitor of receptor tyrosine kinases (RTKs) that are upstream of PI3K and MEK1/2 signaling. We further demonstrate that NAG-1 is induced and plays a critical role(s) in apoptosis by NSAIDs-based combined treatment. In sum, our results show that combinatorialtreatment of sulindac sulfide or NS398 and genistein results in a highlysynergistic induction of apoptotic cell death to increase the chemopreventive effects of the NSAIDs, sulindac sulfide and NS398.

키워드

참고문헌

  1. Adhami, V. M., A. Malik, N. Zaman, S. Sarfaraz, I. A. Siddiqui, D. N. Syed, F. Afaq, F. S. Pasha, M. Saleem, and H. Mukhtar. 2007. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res. 13, 1611-1619 https://doi.org/10.1158/1078-0432.CCR-06-2269
  2. Baek, S. J., K. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908 https://doi.org/10.1124/mol.104.005108
  3. Baek, S. J., R. Okazaki, S. H. Lee, J. Martinez, J. S. Kim, K. Yamaguchi, Y. Mishina, D. W. Martin, A. Shoieb, M. F. McEntee, and T. E. Eling. 2006. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560 https://doi.org/10.1053/j.gastro.2006.09.015
  4. Baek, S. J., L. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434 https://doi.org/10.1093/carcin/23.3.425
  5. Banu, N., A. Buda, S. Chell, D. Elder, M. Moorghen, C. Paraskeva, D. Qualtrough, and M. Pignatelli. 2007. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptortransactivation: possibilities for combination therapy. Cell Prolif. 40, 768-779 https://doi.org/10.1111/j.1365-2184.2007.00459.x
  6. Brognard, J., A. S. Clark, Y. Ni, and P. A. Dennis. 2001. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986-3997
  7. Brognard, J. and P. A. Dennis. 2002. Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death Differ. 9, 893-904 https://doi.org/10.1038/sj.cdd.4401054
  8. Chen, Y. L., P. C. Lin, S. P. Chen, C. C. Lin, N. M. Tsai, Y. L. Cheng, W. L. Chang, S. Z. Lin, and H. J. Harn. 2007. Activation of Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 via Extracellular Signal-RegulatedKinase 1/2 Mitogen-Activated Protein Kinase Revealed a Isochaihulactone-Triggered Apoptotic Pathway in Human Lung Cancer A549 Cells. J. Pharmacol. Exp. Ther. 323, 746-756 https://doi.org/10.1124/jpet.107.126193
  9. Clark, A. S., K. West, S. Streicher, and P. A. Dennis. 2002. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1, 707-717
  10. Crowell, J. A. and V. E. Steele. 2003. AKT and the phosphatidylinositol 3-kinase/AKT pathway: important molecular targets for lung cancer prevention and treatment. J. Natl. Cancer Inst. 95, 291-302 https://doi.org/10.1093/jnci/95.4.291
  11. Crowell, J. A., V. E. Steele, and J. R. Fay. 2007. Targeting the AKT protein kinase for cancer chemoprevention. Mol. Cancer Ther. 6, 2139-2948 https://doi.org/10.1158/1535-7163.MCT-07-0120
  12. Danial, N. N. and S. J. Korsmeyer. 2004. Cell death: Critical control points. Cell 116, 205-219 https://doi.org/10.1016/S0092-8674(04)00046-7
  13. Dixon, R. A. and D. Ferreira. 2003. Genistein. Phytochemistry 60, 205-211
  14. Garg, A. K., T. A. Buchholz, and B. B. Aggarwal. 2005. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid. Redox Signal. 7, 1630-1647 https://doi.org/10.1089/ars.2005.7.1630
  15. Hawk, E. T. and B. Levin. 2005. Colorectal cancer prevention. J. Clin. Oncol. 23, 378-391 https://doi.org/10.1200/JCO.2005.08.09710.1200/JCO.2005.08.097
  16. Hu, H., C. Jiang, G. Li, and J. Lu. 2005. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Carcinogenesis 269, 1374-1381 https://doi.org/10.1093/carcin/bgi094
  17. Huang, C., J. Li, M. Ding, S. S. Leonard, L. Wang, V. Castranova, V. Vallyathan, and X. Shi. 2001. UV Induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. J. Biol. Chem. 276, 40234-40240 https://doi.org/10.1074/jbc.M103684200
  18. Huang, Y., Q. He, M. J. Hillman, R. Rong, and M. S. Sheikh. 2001. Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res. 61, 6918-6924
  19. Hung, W. C., H. C. Chang, M. R. Pan, T. H. Lee, and L. Y. Chuang. 2000. Induction of p27KIP1 as a Mechanism Underlying NS398- Induced Growth Inhibition in Human Lung Cancer Cells. Mol. Pharmacol. 58, 1398-1403
  20. Kim, C. H., S. I. Han, S. Y. Lee, H. S. Youk, J. Y. Moon, H. Q. Duong, M. J. Park, Y. M. Joo, H. G. Park, Y. J. Kim, M. A. Yoo, S. C. Lim, and H. S. Kang. 2007. Protein kinase C-ERK1/2 signal pathway switches glucose depletion-induced necrosis to apoptosis by regulating superoxide dismutases and suppressing reactive oxygen species production in A549 lung cancer cells. J. Cell Phyiol. 211, 371-385 https://doi.org/10.1002/jcp.20941
  21. Li, M., X. Wu, and X. C. Xu. 2001. Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin. Cancer Res. 7, 1010-1016
  22. Liou, J. Y., D. Ghelani, S. Yeh, and K. K. Wu. 2007. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon. Cancer Res. 67, 3185-3191 https://doi.org/10.1158/0008-5472.CAN-06-3431
  23. Liu, X. H., S. Yao, A. Kirschenbaum, and A. C. Levine. 1998. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res. 58, 4245-4249
  24. Lowe, S. W. and A. W. Lin. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495 https://doi.org/10.1093/carcin/21.3.485
  25. MacKeigan, J. P., D. Taxman, D. Hunter, H. S. Earp 3rd, L. M. Graves, and J. P. Ting. 2002. Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase kinase inhibition. Clin. Cancer Res. 8, 2091-2099
  26. Meeran, S. M. and S. K. Katiyar. 2008. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front. Biosci. 13, 2191-2202 https://doi.org/10.1016/j.canlet.2008.03.049
  27. Meier, F., S. Busch, K. Lasithiotakis, D. Kulms, C. Garbe, E. Maczey, M. Herlyn, and B. Schittek. 2007. Combined targeting of MAPK and AKT signalling pathways is a promising strategy for melanoma treatment. Br. J. Dermatol. 156,1204-1213 https://doi.org/10.1111/j.1365-2133.2007.07821.x
  28. Minter, H. A., J. W. Eveson, S. Huntley, D. J. Elder, and A. Hague. 2003. The Cyclooxygenase 2-selective Inhibitor NS398 Inhibits Proliferation of Oral Carcinoma Cell Lines by Mechanisms Dependent and Independent of Reduced Prostaglandin E2 Synthesis. Clin. Cancer Res. 9, 1885-1897
  29. Newman, D., M. Sakaue, J. S. Koo, K. S. Kim, S. J. Baek, T. E. Eling, and A. M. Jetten. 2003. Differential regulation of nonsteroidal anti-inflammatory drug-activated gene in normal human tracheobronchial epithelial and lung carcinomacells by retinoids. Mol. Phamacol. 63, 557-564 https://doi.org/10.1124/mol.63.3.557
  30. Saha, D., H. Pyo, and H. Choy. 2003. COX-2 inhibitor as a radiation enhancer: new strategies for the treatment of lung cancer. Am. J. Clin. Oncol. 26, S70-74
  31. Tegeder, I., J. Pfeilschifter, and G. Geisslinger. 2001. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 15, 2057-2072 https://doi.org/10.1096/fj.01-0390rev
  32. Totzke, G., K. Schulze-Osthoff, and R. U. Jänicke. 2003. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22, 8021-8030 https://doi.org/10.1038/sj.onc.1206837
  33. Ulrich, C. M., J. Bigler, and J. D. Potter. 2006. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat. Rev. Cancer 6, 130-140 https://doi.org/10.1038/nrc1801
  34. Vane, J. R. and R. M. Botting. 1998. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med. 104, 2S-8S
  35. Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753 https://doi.org/10.1002/ijc.11173
  36. Yamaguchi, H. and H. G. Wang. 2001. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 53, 7779-7786
  37. Yamaguchi, K., S. H. Lee, T. E. Eling, and S. J. Baek. 2004. Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of posphatidylinositol 3-knase/AKT/GSK-3 Pathway. J. Biol. Chem. 279, 49617-49623 https://doi.org/10.1074/jbc.M408796200
  38. Yeh, T. C., P. C. Chiang, T. K. Li, J. L. Hsu, C. J. Lin, S. W. Wang, C. Y. Peng, and J. H. Guh. 2007. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochm. Pharmacol. 73, 782-792 https://doi.org/10.1016/j.bcp.2006.11.027
  39. Zhang, L., J. Yu, B. H. Park, K. W. Kinzler, and B. Vogelstein. 2000. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989-992 https://doi.org/10.1126/science.290.5493.989