DOI QR코드

DOI QR Code

The Effect of Potassium Phosphate as a pH Stabilizer on the Production of Gellan by Sphingomonas paucibilis NK-2000

Sphingomonas paucibilis NK-2000에 의한 젤란의 생산에 미치는 pH 안정제로서의 인산칼슐의 영향

  • Published : 2009.08.30

Abstract

Maximal productions of gellan by Sphingomnas paucibilis NK2000 from 20 g/l glucose and 10 g/l soybean pomace were 7.46 g/l in a flask and 7.35 g/l in a 7 l bioreactor, when the initial pH of media was 6.8. Maximal production of gellan in a 7 l bioreactor under pH control by sodium hydroxide was 8.42 g/l, whereas that under control by potassium phosphate was 8.50 g/l. The optimal concentration of potassium phosphate in a medium for production of gellan by S. paucibilis NK2000 was found to be 5.0 g/l. Maximal production of gellan in a medium containing 5.0 g/l potassium phosphate without pH control was 8.93 g/l in a 7 l bioreactor. In this study, a simple process without pH control was developed to enhance the production of gellan, with optimized concentration of potassium phosphate in the medium.

포도당 및 간장박의 농도가 각각 20 g/l 및 10 g/인 배지에서 Sphingomnas paucibilis NK2000가 생산하는 젤란의 최대 생산성은 배지의 초기 pH를 6.8로 하였을 경우, 플라스크 규모에서 7.46 g/l이었으며, 7 l 생물배양기에서는 7.35 g/l이었다. 배지의 pH를 6.8로 유지하면서 7 l 생물배양기에서 젤란을 생산할 때, 젤란의 최대 생산성은 pH 조절제로 수산화나트륨을 사용하였을 경우에 8.42 g/l 이었으며, 인산칼슘을 사용하였을 경우에 8.50 g/l이었다. Sphingomnas paucibilis NK2000를 배양하여 젤란을 생산할 경우에 배지에 첨가되는 인산칼슘의 최적 농도는 5.0 g/l이었다. 인산칼슘의 농도가 5.0 g/l인 배지를 사용하여 7 l 생물배양기에서 젤란을 생산하였을 때, 젤란의 최대 생산성은 8.93g/l이었다. 본 연구를 통하여 배지의 pH를 조절하지 않고 인산칼슘의 농도를 최적화한 배지를 사용하여 젤란의 생산성을 향상시킬 수 있는 경제적인 방법을 개발하였다.

Keywords

References

  1. Ahn, Y. H., J. H. Park, S. H. Go, and H. K. Jun. 2009. Characterization of bacterial cellulose production by Gluconacetobater sp. JH232. J. Life Science 17, 1582-1586
  2. Arockiasamy, S. and R. M. Banik. 2008. Optimization of gellan gum production by Sphingmonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 203-210
  3. Bai, D. M., Z. H. Yan, Q. Wei, X. M. Zhao, X. G. Li, and S. M. Xu. 2004. Ammonium lactate production by Lactobacillus lactis BNE5-18M in pH-controlled fed-batch fermentations. Biochem. Eng. J. 19, 47-51 https://doi.org/10.1016/j.bej.2003.10.002
  4. Banik, R. M., A. Santhiagu, and S. N. Upadhyay. 2006. Optimization of nutrients for gellan gum production by Sphingmonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresource Technol. 98, 792-797 https://doi.org/10.1016/j.biortech.2006.03.012
  5. Cha, J. Y., S. H. Park, J. S. Heo, B. K. Park, J. W. Lee, J. W. Kim, and Y. S. Cho. 2008. Culture conditions for gulutathione maximum production by Saccharomyces cerevisiae FF-8 in bioreactor. J. Life Science 18, 620-624 https://doi.org/10.5352/JLS.2008.18.5.620
  6. Choi, S. U., H. D. Paik, S. C. Lee, T. Nihira, and Y. I. Hwang. 2004. Enhanced productivity of human lysozyme by pH-controlled batch fermentation of recombinant Saccharomyces cerevisiase. J. Biosci. Bioeng. 98, 132-135 https://doi.org/10.1016/S1389-1723(04)70255-8
  7. Cokgor, E. U., S. Oktay, D. O. Tas, G. E. Zengin, and D. Orhon. 2009. Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Bioresouce Technol. 100, 380-386 https://doi.org/10.1016/j.biortech.2008.05.025
  8. Fang, Q. H. and J. J. Zhong. 2002. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37, 769-774 https://doi.org/10.1016/S0032-9592(01)00278-3
  9. Harding, N. E., Y. N. Patel, and R. J. Coleman. 2004. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J. Ind. Microbiol. Biotechnol. 31, 70-82 https://doi.org/10.1007/s10295-004-0118-9
  10. Hu, Z. C., Y. G. Zheng, Z. Wang, and Y. C. Shen. 2006. The pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomtces dendrorhous. Enzyme Microb. Technol. 39, 586-590 https://doi.org/10.1016/j.enzmictec.2005.11.017
  11. Ibrahim, H. M., W. M. W. Yusoff, A. A. Hamid, R. M. Illias, O. Hassan, and O. Omar. 2005. Optimization of medium for the production of β-cyclodextrin glucanotransferase using central composite design (CCD). Process Biochem. 40, 753-758 https://doi.org/10.1016/j.procbio.2004.01.042
  12. Jansson, R. E., B. Lindberg, and P. I. A. Sandford. 1983. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 124, 135-223 https://doi.org/10.1016/0008-6215(83)88361-X
  13. Jin, H., N. K. Lee, M. K. Shin, S. K. Kim, D. L. Kaplan, and J. W. Lee. 2003. Production of gellan gum by Sphingomanas paucimobilis NK200 with soybean pomace. Biochem. Eng. J. 16, 357-360 https://doi.org/10.1016/S1369-703X(03)00076-7
  14. Jin, H. J. K. Yang, K. I. Jo, C. H. Chung, S. K. Kim, S. W. Nam, and J. W. Lee. 2006. Mass production of heteropolysaccharide- 7 (PS-7) by Beijerinckia indica HS-2001 with soybean pomace as a nitrogen source. Process Biochem. 41, 270-275 https://doi.org/10.1016/j.procbio.2005.07.012
  15. Jo, K. I. Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188 https://doi.org/10.1007/s12257-007-0149-y
  16. Jung, D. Y., Y. S. Cho, C. H. Chung, D. I. Jung, K. Kim, and J. W. Lee. 2001. Improved production of curdlan with concentrated cells of Agrobacterium sp. Biotechnol. Bioprocess Eng. 6, 107-111 https://doi.org/10.1007/BF02931955
  17. Kang, K. S. and G. T. Veeder. 1982. Polysaccharide S-60 and bacterial fermentation process for its fermentation. US patent 4,326,053
  18. Kang, K. S., G. T. Veeder, P. J. Mirrasoul, T. K. Kaneko, and L. W. Cottrell. 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Environ. Mircobiol. 43, 1086-1091
  19. Lee, J. H., J. H. Kim, I. H. Zhu, X. B. Zhan, J. W. Lee, H. D. Shin, and S. K. Kim. 2001. Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol. Lett. 23, 817-820 https://doi.org/10.1023/A:1010365706691
  20. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresourec Technol. 99, 378-386 https://doi.org/10.1016/j.biortech.2006.12.013
  21. Lim, S. M., J. R. Ru, J. W. Lee, and S. K. Kim. 2003. Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461. J. Life Science 13, 705-711 https://doi.org/10.5352/JLS.2003.13.5.705
  22. Liu, Y. C., F. S. Wang, and W. C. Lee. 2001. On-line monitoring and controlling system for fermentation process. Biochem. Eng. J. 7, 17-25 https://doi.org/10.1016/S1369-703X(00)00100-5
  23. Martin, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sa-Correia. 1996. Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants. Biotechnol. Appl. Biochem. 24, 47-54
  24. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
  25. Nampoothiri, K. M. R. R. Singhania, C. Sabarinath, and A. Pandey. 2003. Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem. 38, 1513-1519 https://doi.org/10.1016/S0032-9592(02)00321-7
  26. Parente, E., M. Moles, and A. Ricciardi, 1996. Leucocin F10, a bactericin from Leucinostic carnosum. Int J. Food Microbiol. 33, 231-243 https://doi.org/10.1016/0168-1605(96)01159-2
  27. Rao, K. J., C. H. Kim, and S. K. Rhee. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35, 639-647 https://doi.org/10.1016/S0032-9592(99)00129-6
  28. Sa-Correia, I., A. M. Fialho, P. Videria, L. M. Moreira, A. R. Marques, and H. Albano. 2002. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 29, 170-176 https://doi.org/10.1038/sj.jim.7000266
  29. Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kapaln, and J. W. Lee. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in 100 l bioreactor with the inner pressure. J. Microbiol. Bitechnol. 14, 237-242
  30. Shakigram, N. S., S. K. Singh, R. S. Singhal, G. Szakacs, and A. Pandey. 2008. Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum. Biochem. Eng. J. 41, 295-300 https://doi.org/10.1016/j.bej.2008.05.011
  31. Shu, C. H. and M. Y. Lung. 2004. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antriodia comphorata in batch cultures. Process Biochem. 39, 931-937 https://doi.org/10.1016/S0032-9592(03)00220-6

Cited by

  1. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical methods vol.29, pp.3, 2012, https://doi.org/10.1007/s11814-011-0192-4
  2. Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
  3. Application of statistical experimental design for optimization of physiological factors and their influences on production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method vol.28, pp.11, 2011, https://doi.org/10.1007/s11814-011-0107-4
  4. Enhanced production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 in repeated batch culture with optimized substitution of culture medium vol.16, pp.2, 2011, https://doi.org/10.1007/s12257-010-0120-1
  5. Pilot-scale Optimization of Parameters Related to Dissolved Oxygen for Mass Production of Pullulan by Aureobasidium pullulans HP-2001 vol.20, pp.10, 2010, https://doi.org/10.5352/JLS.2010.20.10.1433
  6. Comparison of Statistical Methods for Optimization of Salts in Medium for Production of Carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a Recombinant E. coli JM109/DL-3 vol.21, pp.9, 2011, https://doi.org/10.5352/JLS.2011.21.9.1205
  7. Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method vol.15, pp.5, 2010, https://doi.org/10.1007/s12257-010-0042-y