DOI QR코드

DOI QR Code

Quercetin Sensitizes Human Leukemic Cells to TRAIL-induced Apoptosis: Involvement of DNA-PK/Akt Signal Transduction Pathway

Quercetin 에 의한 사람백혈병 세포의 TRAIL 에 대한 감수성 증가: DNA-PK/Akt 신호전달경로의 관여

  • Park, Jun-Ik (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, Mi-Ju (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, Hak-Bong (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Bae, Jae-Ho (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Lee, Jea-Won (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Park, Soo-Jung (Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health) ;
  • Kim, Dong-Wan (Department of Microbiology, College of Natural Sciences, Chang Won National University) ;
  • Kang, Chi-Dug (Department of Biochemistry, Pusan National University School of Medicine) ;
  • Kim, Sun-Hee (Department of Biochemistry, Pusan National University School of Medicine)
  • 박준익 (부산대학교 의학전문대학원 생화학교실) ;
  • 김미주 (부산대학교 의학전문대학원 생화학교실) ;
  • 김학봉 (부산대학교 의학전문대학원 생화학교실) ;
  • 배재호 (부산대학교 의학전문대학원 생화학교실) ;
  • 이재원 (부산대학교 의학전문대학원 생화학교실) ;
  • 박수정 (국립보건원 만성질환연구부) ;
  • 김동완 (창원대학교자연과학대학 미생물학과) ;
  • 강치덕 (부산대학교 의학전문대학원 생화학교실) ;
  • 김선희 (부산대학교 의학전문대학원 생화학교실)
  • Published : 2009.08.30

Abstract

Despite the fact that many cancer cells are sensitive to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, some cancer cells show either partial or complete resistance to TRAIL. Human leukemic K562 and CEM cells also show resistance to TRAIL-induced apoptosis. Novel molecular target and treatment strategies are required to overcome TRAIL resistance of human leukemia cells. Therefore, the purpose of this study was to target key anti-apoptotic molecules deciding TRAIL resistance for sensitization of TRAIL-resistant K562 and CEM cells, and to evaluate the effect of quercetin as a TRAIL sensitizer on these TRAIL-resistant cells. We found that quercetin acted in synergy with TRAIL to enhance TRAIL-induced apoptosis in K562 cells by inhibition of the DNA-PK/Akt signaling pathway, which leads to enhancement of TRAIL-mediated activation of caspases and concurrent cleavage of PARP and up-regulation of Bax. The findings suggest that the DNA-PK/Akt signaling pathway plays an essential role in regulating cells to escape from TRAIL-induced apoptosis, and quercetin could act in synergy with TRAIL to increase apoptosis by inhibition of the DNA-PK/Akt signaling pathway, which overcomes TRAIL-resistance of K562 and CEM cells. This study suggests that DNA-PK might interfere with TRAIL-induced apoptosis in human leukemic cells through activation of the Akt signaling pathway.

TNF-related apoptosis-inducing ligand (TRAIL) 는 암세포에만 작용하고 정상세포에는 영향을 주지 않는 항암제로서 알려져 있지만, TRAIL에 내성을 나타내는 암세포의 출현이 문제점으로 지적되고 있다. 사람 백혈병세포인 K562 및 CEM 세포는 TRAIL에 내성을 나타낸다. 본 연구에서는 이러한 백혈병 세포의 TRAIL 내성에 대한 새로운 표적 분자의 발굴과 이를 토대로 한 새로운 내성극복 방법을 연구하였다. 새로운 TRAIL sensitizer로서 quercetin을 발굴하고, 이를 K562 세포에 TRAIL과 병용 투여하므로서 TRAIL의 효과 증강에 의한 내성극복을 시도하였다. Quercetin은 DNA-PK/Akt 신호전달경로를 억제하므로서, caspases 활성 증강과 PARP cleavage, 이에 따른 Bax의 발현을 증강시키는 기전으로 K562 세포의 TRAIL에 의한 apoptosis를 증대시키는 활성이 있음을 밝혔다. 이러한 quercetin 병용 처리에 의한 TRAIL의 활성 증강으로 TRAIL 내성이 극복됨을 CEM 세포에서도 확인하였다. 이러한 연구 결과는 DNA-PK 발현 증강에 의한 Akt의 활성화가 TRAIL 내성을 유발하는 기전을 토대로 함을 밝힘으로써, DNA-PK 활성 억제제를 TRAIL과 병용하므로서 TRAIL 내성을 나타내는 암세포에 내성 극복 효과를 얻을 수 있는 새로운 약제 병용 방법을 제시하였다.

Keywords

References

  1. Almasan, A. and A. Ashkenazi. 2003. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337-348 https://doi.org/10.1016/S1359-6101(03)00029-7
  2. Hayakawa. 2003. Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res. 63, 1365-1370
  3. Baritaki, S., S. Huerta-Yepez, T. Sakai, D. A. Spandidos, and B. Bonavida. 2007. Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: Up-regulation of DR5 and inhibition of Yin Yang 1. Mol. Cancer Ther. 6, 1387-1399 https://doi.org/10.1158/1535-7163.MCT-06-0521
  4. Butler, L. M., V. Liapis, S. Bouralexis, K. Welldon, S. Hay, M. Thaile, A. Labrinidis, W. D. Tilley, D. M. Findlay, and A. Evdokiou. 2006. The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. Int. J. Cancer 119, 944-954 https://doi.org/10.1002/ijc.21939
  5. Chen, X., H. Thakkar, F. Tyan, S. Gim, H. Robinson, C. Lee, S. K. Pandey, C. Nwokorie, N. Onwudiwe, and R. K. Srivastava. 2001. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20, 6073-6083 https://doi.org/10.1038/sj.onc.1204736
  6. Cheng, J., B. L. Hylander, M. R. Baer, X. Chen, and E. A. Repasky. 2006. Multiple mechanisms underlie resistance of leukemia cells to Apo2 Ligand/TRAIL. Mol. Cancer Ther. 5, 1844-1853 https://doi.org/10.1158/1535-7163.MCT-06-0050
  7. Downward, J. 2004. PI 3-kinase, Akt and cell survival. Semin. Cell Dev. Biol. 15, 177-182 https://doi.org/10.1016/j.semcdb.2004.01.002
  8. Dragoi, A. M., X. Fu, S. Ivanov, P. Zhang, L. Sheng, D. Wu, G. C. Li, and W. M. Chu 2005. DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. EMBO J. 24, 779-789 https://doi.org/10.1038/sj.emboj.7600539
  9. Dyer, M. J., M. MacFarlane, and G. M. Cohen. 2007. Barriers to effective TRAIL-targeted therapy of malignancy. J. Clin. Oncol. 25, 4505-4506 https://doi.org/10.1200/JCO.2007.13.1011
  10. Elrod, H. A. and S. Y. Sun. 2008. Modulation of death receptors by cancer therapeutic agents. Cancer Biol. Ther. 7, 163-173 https://doi.org/10.4161/cbt.7.2.5335
  11. Feng, J., J. Park, P. Cron, D. Hess, and B. A. Hemmings. 2004. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189-41196 https://doi.org/10.1074/jbc.M406731200
  12. Gamet-Payrastre, L., S. Manenti, M. P. Gratacap, J. Tulliez, H. Chap, and B. Payrastre. 1999. Flavonoids and the inhibition of PKC and PI 3-kinase. Gen. Pharmacol. 32, 279-286 https://doi.org/10.1016/S0306-3623(98)00220-1
  13. Griffith, T. S. and D. H. Lynch. 1998. TRAIL: a molecule with multiple receptors and control mechanisms. Curr. Opin. Immunol. 10, 559-563 https://doi.org/10.1016/S0952-7915(98)80224-0
  14. Guo, F., C. Sigua, J. Tao, P. Bali, P. George, Y. Li, S. Wittmann, L. Moscinski, P. Atadja, and K. Bhalla. 2004 Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 64, 2580-2589 https://doi.org/10.1158/0008-5472.CAN-03-2629
  15. Hesry, V., C. Piquet-Pellorce, M. Travert, L. Donaghy, B. J$\'{e}$gou, J. J. Patard, and T. Guillaudeux. 2006. Sensitivity of prostate cells to TRAIL-induced apoptosis increases with tumor progression: DR5 and caspase 8 are key players. Prostate. 66, 987-995 https://doi.org/10.1002/pros.20421
  16. Hietakangas, V., M. Poukkula, K. M. Heiskanen, J. T. Karvinen, L. Sistonen, and J. E. Eriksson. 2003. Erythroid differentiation sensitizes K562 leukemia cells to TRAIL-induced apoptosis by downregulation of c-FLIP. Mol. Cell Biol. 23, 1278-1291 https://doi.org/10.1128/MCB.23.4.1278-1291.2003
  17. Insinga, A., S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi, A. Viale, L. Altucci, C. Nervi, S. Minucci, and P. G. Pelicci. 2005. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med. 11, 71-76 https://doi.org/10.1038/nm1160
  18. Kennedy, S.G., E. S. Kandel, T. K. Cross, and N. Hay. 1999. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell Biol. 19, 5800-5810
  19. Kim, S. H., J. H. Um, D. W. Kim, B. H. Kwon, D. W. Kim, B. S. Chung, and C. D. Kang. 2000. Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin. Leuk. Res. 24, 917-925 https://doi.org/10.1016/S0145-2126(00)00061-8
  20. Kim, Y. H. and Y. J. Lee. 2007. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J. Cell Biochem. 100, 998-1009 https://doi.org/10.1002/jcb.21098
  21. Kruyt, F. A. 2008. TRAIL and cancer therapy. Cancer Lett. 263, 14-25 https://doi.org/10.1016/j.canlet.2008.02.003
  22. Kurbanov, B. M., L. F. Fecker, C. C. Geilen, W. Sterry, and J. Eberle. 2007. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 26, 3364-3377 https://doi.org/10.1038/sj.onc.1210134
  23. Lane, D., V. Robert, R. Grondin, C. Rancourt, and A. Pich$\'{e}$. 2007. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int. J. Cancer 21, 1227-1237
  24. Larribere, L., M. Khaled, S. Tartare-Deckert, R. Busca, F. Luciano, K. Bille, G. Valony, A. Eychene, P. Auberger, J. P. Ortonne, R. Ballotti, and C. Bertolotto. 2004. PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ. 11, 1084-1091 https://doi.org/10.1038/sj.cdd.4401475
  25. MacFarlane, M., N. Harper, R. T. Snowden, M. J. Dyer, G. A. Barnett, J. H. Pringle, and G. M. Cohen. 2002. Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 21, 6809-6818 https://doi.org/10.1038/sj.onc.1205853
  26. McDunn, J.E., J. T. Muenzer, L. Rachdi, K.C. Chang, C. G. Davis, W. M. Dunne, D. Piwnica-Worms, E. Bernal-Mizrachi, and R. S. Hotchkiss. 2008. Peptide-mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB J. 22, 561-568
  27. M$\'{e}$rino, D., N. Lalaoui, A. Morizot, E. Solary, and O. Micheau. 2007. TRAIL in cancer therapy: present and future challenges. Expert Opin. Ther. Targets 11, 1299-1314 https://doi.org/10.1517/14728222.11.10.1299
  28. Morales, J. C., M. J. Ruiz-Magana, and C. Ruiz-Ruiz. 2007. Regulation of the resistance to TRAIL-induced apoptosis in human primary T lymphocytes: role of NF-kappaB inhibition. Mol. Immunol. 44, 2587-2597 https://doi.org/10.1016/j.molimm.2006.12.015
  29. Nagane, M., G. Pan, J. J. Weddle, V. M. Dixit, W. K. Cavenee, and H. J. Huang. 2000. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor- related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60, 847-853
  30. Parcellier, A. and L. A. Tintignac, E. Zhuravleva, and B. A. Hemmings. 2008. PKB and the mitochondria: Akting on apoptosis. Cell Signal 20, 21-30 https://doi.org/10.1016/j.cellsig.2007.07.010
  31. Riccioni, R., L. Pasquini, G. Mariani, E. Saulle, A. Rossini, D. Diverio, E. Pelosi, A. Vitale, A. Chierichini, M. Cedrone, R. Foa, F. Lo Coco, C. Peschle, and U. Testa. 2005. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90, 612-624 https://doi.org/10.1158/0008-5472
  32. Rieger, J., B. Frank, M. Weller, and W. Wick. 2007. Mechanisms of resistance of human glioma cells to Apo2 ligand/TNF-related apoptosis-inducing ligand. Cell Physiol. Biochem. 20, 23-34 https://doi.org/10.1159/000104150
  33. Syed, V., K. Mukherjee, S. Godoy-Tundidor, and S. M. Ho. 2007. Progesterone induces apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL overexpression. J. Cell Biochem. 102, 442-452 https://doi.org/10.1002/jcb.21304
  34. Thakkar, H., X. Chen, F. Tyan, S. Gim, H. Robinson, C. Lee, S. K. Pandey, C. Nwokorie, N. Onwudiwe, and R. K. Srivastava. 2001. Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J. Biol. Chem. 276, 38361-38369 https://doi.org/10.1074/jbc.M103321200
  35. Tian, X., G. Chen, H. Xing, D. Weng, Y. Guo, and D. Ma. 2007. The relationship between the down-regulation of DNA-PKcs or Ku70 and the chemosensitization in human cervical carcinoma cell line HeLa. Oncol. Rep. 18, 927-932
  36. Uchida, M., M. Iwase, S. Takaoka, S. Yoshiba, G. Kondo, H. Watanabe, M. Ohashi, M. Nagumo, and S. Shintani. 2007. Enhanced susceptibility to tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in oral squamous cell carcinoma cells treated with phosphatidylinositol 3-kinase inhibitors. Int. J. Oncol. 30, 1163-1171
  37. Um, J. H., C. D. Kang, J. H. Bae, G. G. Shin, D. W. Kim, D. W. Kim, B. S. Chung, and S.H. Kim. 2004. Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drugsin hypoxic tumor cells. Exp. Mol. Med. 36, 233-242 https://doi.org/10.1038/emm.2004.32
  38. Wajant, H., E. Haas, R. Schwenzer, F. Muhlenbeck, S. Kreuz, G. Schubert, M. Grell, C. Smith, and P. Scheurich. 2000. Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J. Biol. Chem. 275, 24357-24366 https://doi.org/10.1074/jbc.M000811200
  39. Weterings, E. and D. J. Chen. 2007. DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys? J. Cell Biol. 179, 183-186 https://doi.org/10.1083/jcb.200705106
  40. Yagita, H., K. Takeda, Y. Hayakawa, M. J. Smyth, and K. Okumura. 2004. TRAIL and its receptors as targets for cancer therapy. Cancer Sci. 95, 777-783 https://doi.org/10.1111/j.1349-7006.2004.tb02181.x
  41. Zhong, X. and A. R. Safa. 2007. Phosphorylation of RNA helicase A by DNA-dependent protein kinase is indispensable for expression of the MDR1 gene product P-glycoprotein in multidrug-resistant human leukemia cells. Biochemistry 46, 5766-5775 https://doi.org/10.1021/bi700063b