DOI QR코드

DOI QR Code

Ultrastructural Study of Programmed Cell Death of Tapetum In Panax ginseng

인삼 융단조직의 프로그램 세포사에 관한 미세구조적 연구

  • Published : 2009.08.30

Abstract

Tapetum is the tissue in which nutrients are supplied to the developing microspore in angiosperm anther. At tetrad stage of microspore, the tapetal cells show maximum development, but they began to be degenerated by apoptotic programmed cell death (PCD) after sporopollenin accumulation in the pollen wall. The initial step of PCD was observed as vacuolar fusion. After that, cytoplasmic condensation and nuclear fragmentation followed. Lipid droplets are degenerated at a relatively late stage of PCD, and orbicular bodies are the last remains in tapetal cells. The cell wall was relatively resistant against vacuolar enzymes in tapetal cells; it was considered the last structure remaining during programmed cell death of tapetum in ginseng anther.

융단조직은 약실 내에서 발달하는 소포자에 영양분을 공급하고 퇴화되는 조직으로써, 소포자 4분자 시기에 최대로 발달하고 화분벽에 포분질에 축적된 후 프로그램 세포사가 일어남으로써 세포가 죽게 되고 융단조직 전체가 퇴화된다. 액포가 융합되므로써 프로그램 세포사가 시작되고 세포질응축, 핵질 분절 등이 뒤따라 일어난다. 지질 덩어리는 비교적 늦은 시기에 퇴화되며 orbicular body는 가장 늦게까지 남아 있게 된다. 융단세포의 프로그램세포사 전 과정 중에서 세포벽은 액포에서 기원하는 가수분해 효소에 비교적 안정적이므로 가장 늦게 퇴화되는 것으로 확인되었다.

Keywords

References

  1. Arunika, G., D. M. Pearce, M. B. Jackson, C. R. Hawes, and D. E. Evans. 2001. Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in toots of maize. Planta 212, 205-214 https://doi.org/10.1007/s004250000381
  2. Bethke, P. C. and R. L Jones. 2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 25, 19-29 https://doi.org/10.1046/j.1365-313x.2001.00930.x
  3. Chen, H. M., J. Zhou, and Y. R. Dai. 2000. Cleavage of lamin- like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett. 480, 165-168 https://doi.org/10.1016/S0014-5793(00)01912-8
  4. Danon, A. and P. Gallois. 1998. UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett. 437, 131-136 https://doi.org/10.1016/S0014-5793(98)01208-3
  5. DeJong, A. J., F. A. Hoeberichts, E. T. Yakimova, E. Maximova, and E. J. Woltering. 2000. Chemical-induced apoptotic cell death in tomato cells: involvement of caspase- like proteases. Planta 211, 656-662 https://doi.org/10.1007/s004250000341
  6. Drew, M. C., C. J. He, and P. W. Morgan. 2000. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123-127 https://doi.org/10.1016/S1360-1385(00)01570-3
  7. Fath, A., P. Bethke, L. J, Meza-Romero, and R. Jones. 2000. Programmed cell death in cereal aleurone. Plant Mol. Biol. 44, 255-266 https://doi.org/10.1023/A:1026584207243
  8. Filonova, L. H., P. V. Bozhkov, V. B. Brukhin, G. Daniel, B. Zhivotovsky, and S. Arnold. 2000. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 113, 4399-4411
  9. Fukuda, H. 2000. Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 44, 245-253 https://doi.org/10.1023/A:1026532223173
  10. Gietl, C. and M. Schmid. 2001. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften 88, 49-58 https://doi.org/10.1007/s001140000203
  11. Hansen, G. 2000. Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant Microbe. Interact 13, 649-657 https://doi.org/10.1094/MPMI.2000.13.6.649
  12. Hermann, P. M. and B. F. Palser. 2000. Stamen development in the Ericaceae. I. Anther wall, microsporogenesis, inversion, and appendages. Am. J. Bot. 87, 934-957 https://doi.org/10.2307/2656993
  13. Hernould, M., E. Zabaleta, J. P. Carde, S. Litvak, A. Araya, and A. Mouras. 1998. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol. Biol. 36, 499-508 https://doi.org/10.1023/A:1005946104983
  14. Houot, V., P. Etienne, A. S. Petitot, S. Barbier, J. P. Blein, and L. Suty. 2001. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J. Exp. Bot. 52, 1721-1730 https://doi.org/10.1093/jexbot/52.361.1721
  15. Jeong, B. K. 2005. Fine Structural Study of Pollen Wall Development at Late Stage of Microsporogenesis in Panax ginseng. Korean J. Electron Microscopy 35, 263-272
  16. Jones, A. M. and J. L. Dangl. 1996. Logjam at styx:programmed cell death in plants. Trends Plant Sci. 1, 114-119 https://doi.org/10.1016/S1360-1385(96)90005-9
  17. Katsuhara, M. 1997. Apoptosis-like cell death in barley roots under salt stress. Plant and Cell Physiology 38, 1091-1093 https://doi.org/10.1093/oxfordjournals.pcp.a029277
  18. Koukalova, B, A. Kovarik, J. Fajkus, and J. Siroky. 1997. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett. 414, 289-292 https://doi.org/10.1016/S0014-5793(97)01008-9
  19. Kreunen, S. S. and J. M. Osborn. 1999. Pollen and anther development in Nelumbo (Nelumbonaceae). Am. J. Bot. 86, 1662-1676 https://doi.org/10.2307/2656664
  20. MacCarrone, M., G. Zadelhoff, G. A. Veldink, J. F. Vliegenthart, and A. Finazzi-Agro. 2000. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death. Eur. J. Biochem. 267, 5078-5084 https://doi.org/10.1046/j.1432-1327.2000.01564.x
  21. Mittler, R. and E. Lam. 1997. Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Mol. Biol. 34, 209-221 https://doi.org/10.1023/A:1005868402827
  22. Pedroso, M. C. and D. Durzan. 1999. Detection of apoptosis in chloroplasts and nuclei in different gravitational environments. J. Gravit. Physiol. 6, 19-20
  23. Pedroso, M. C. and D. Durzan. 2000. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann. Bot. 86, 983-994 https://doi.org/10.1006/anbo.2000.1260
  24. Penet, L, S. Nadot, A. Remaster, A. Forchioni, L. Dreyer, and P. H. Gouyon. 2005. Multiple developmental pathways leading to a single morph: monosulcate pollen (examples from the Asparagales). Ann. Bot. 95, 331-343 https://doi.org/10.1093/aob/mci030
  25. Pennel, I. R. and C. Lamb. 1997. Programmed cell death in plants. Plant Cells 9, 1157-1168 https://doi.org/10.1105/tpc.9.7.1157
  26. Ranganath, R. M. and N. R. Nagashree. 2001. Role of programmed cell death in development. Int. Rev. Cytol. 202, 159-242 https://doi.org/10.1016/S0074-7696(01)02005-8
  27. Rubinstein, B. 2000. Regulation of cell death in flower petals. Plant Mol. Biol. 44, 303-318 https://doi.org/10.1023/A:1026540524990
  28. Schmid, M., D. Simpson, and C. Gietl. 1999. Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc. Natl. Acad. Sci. 96, 14159-14164 https://doi.org/10.1073/pnas.96.24.14159
  29. Schmid, M., D. J. Simpson, H. Sarioglu, F. Lottspeich, and C. Gietl. 2001. The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc. Natl. Acad. Sci. 98, 5353-5358 https://doi.org/10.1073/pnas.061038298
  30. Stein, J. C. and G. Hansen. 1999. Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiology 121, 71-80 https://doi.org/10.1104/pp.121.1.71
  31. Ting, J. T., S. S. Wu, C. Ratnayake, and A. H. Huang. 1998. Constituents of the tapetosomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microsporogenesis. Plant J. 16, 541-551 https://doi.org/10.1046/j.1365-313x.1998.00325.x
  32. Verellen, J., E. Smets, and S. Huysmans. 2004. The remarkable genus Coptosapelta (Rubiaceae) : pollen and orbicule morphology and systematic implications. J. Plant Res. 117, 57-68 https://doi.org/10.1007/s10265-003-0128-0
  33. Worrall, D., D. L. Hird, R. Hodge, W. Paul, J. Draper, and R. Scott. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4, 759-771 https://doi.org/10.1105/tpc.4.7.759
  34. Wu, H. M. and A. Y. Cheun. 2000. Programmed cell death in plant reproduction. Plant Mol. Biol. 44, 267-281 https://doi.org/10.1023/A:1026536324081
  35. Xu, Y. and M. R. Hanson. 2000. Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol. 122, 1323-1333 https://doi.org/10.1104/pp.122.4.1323
  36. Young, T. E. and D. R. Gallie. 2000. Programmed cell death during endosperm development. Plant Mol. Biol. 44, 283-301 https://doi.org/10.1023/A:1026588408152
  37. Yu, X. H., T. D. Perdue, Y. M. Heimer, and A. M. Jones. 2002. Mitochondrial involvement in tracheary element programmed cell death. Cell Death. Differ. 9, 189-198 https://doi.org/10.1038/sj.cdd.4400940
  38. Zamyatnina, V. A., L. E. Bakeeva, N. I. Aleksandrushkina, and B. F. Vanyushin. 2002. Apoptosis in the initial leaf of etiolated wheat seedlings: Influence of the antioxidant ionol (BHT) and peroxides. Biochemistry 67, 212-221
  39. Zhang, C., F. C. Guinel, and B. A. Moffatt. 2002. A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3. Protoplasma 219, 59-71 https://doi.org/10.1007/s007090200006

Cited by

  1. The phylogenetic potential of orbicules in angiosperms vol.48, pp.1, 2018, https://doi.org/10.11110/kjpt.2018.48.1.9