DOI QR코드

DOI QR Code

간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce

  • 정성엽 (창원대학교 대학원 생명공합협동과정) ;
  • 최정이 (창원대학교 대학원 생명공합협동과정) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 서현효 (진주산업대학교 환경공학과) ;
  • 나애실 (창원대학교 보건의학과) ;
  • 조용권 (창원대학교 보건의학과) ;
  • 문자영 (창원대학교 보건의학과) ;
  • 하권철 (창원대학교 보건의학과) ;
  • 백도현 (창원대학교 보건의학과) ;
  • 강대욱 (창원대학교 보건의학과)
  • Jung, Sung-Sub (Interdisciplinary Program in Biotechnology, Graduate School, Changwon National University) ;
  • Choi, Jung-I (Interdisciplinary Program in Biotechnology, Graduate School, Changwon National University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University) ;
  • Suh, Hyun-Hyo (Department of Environmental Engineering, Jinju National University) ;
  • Na, Ae-Sil (Department of Biochemistry and Health Science, Changwon National University) ;
  • Cho, Yong-Kweon (Department of Biochemistry and Health Science, Changwon National University) ;
  • Moon, Ja-Young (Department of Biochemistry and Health Science, Changwon National University) ;
  • Ha, Kwon-Chul (Department of Biochemistry and Health Science, Changwon National University) ;
  • Paik, Do-Hyeon (Department of Biochemistry and Health Science, Changwon National University) ;
  • Kang, Dae-Ook (Department of Biochemistry and Health Science, Changwon National University)
  • 발행 : 2009.07.30

초록

수집한 간장시료에서 형태학적인 특성에 따라 상이한 30주의 미생물을 분리하고 MRS 액체배지에서 $37^{\circ}C$, 24시간 배양한 후 회수한 배양 상등액 중 paper disc법으로 항균활성이있는 것을 일차 선별하여 proteinase K 처리에 의해 항균활성이 사라지는 시료 하나를 최종적으로 선별하였다. 선별한 분리주를 생화학적 분류와 분자계통학적 분류를 통해 동정한 결과 B. lichenifirnus로 나타났다. 이 균주의 생장온도와 배지의 초기 pH 에 따른 세포생장 및 박테리오신 활성을 조사한 결과 배양온도는 $37^{\circ}C$, 배지의 초기 pH는 7.0에서 박테리오신의 활성이 가장 높게 나타났다. B. lichenifirnus가 생산하는 박테리오신은 Bacill sogaerucey, Lactobacillus bulgaricus, Lactobacillus plantaum, Micrococcus Iateus, Paenibacillus polymyxa 및 Pediococcus dextrinicus 등에 대해서 항균활성을 보였으며, pH 3.0${\sim}$11.0에 이르는 거의 전 pH 영 역에서 20시간 이상 처리하여도 그 항균활성을 완전히 잃지 않아 비교적 넓은 pH 범위 내에서 안정함을 알 수 있었다. Acetone, acetonitrile, chloroform, ethanol 처리 및 $20{\sim}100^{\circ}C$C에서 60분간 가열시에도 높은 항균활성을 유지하였다. 여러 가수분해효소에 대한 내성을 조사한 결과 trypsin, a-chymotrypsin, pepsin, a -amylase 및 carboxypeptidase A 등은 항균활성에 영향을 주지 않았으나 lipase는 항균활성을 약간 감소시켰으며 proteinase K는 항균활성을 완전히 사라지게 하였다. 75% 황산암모늄 침전, 양이온교환크로마토그래피, 역상 HPLC 등의 과정을 통해 정제된 박테리오신의 상대비활성(specific activity)은 배양상등액에서 보다 약 75배 증가하였고 회수율은 13.5%였다. 역상 HPLC를 통해서 정제된 박테리오신의 분자량을 tricine SDS-PAGE을 통해서 확인한 결과 약 2.5 kDa으로 나타났으며 염색 시 단일 band로 나타나 순수하게 정제되었음을 확인하였다.

A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.

키워드

참고문헌

  1. Biswas, S. R. and M. C. Johnson, and B. Roy. 1991. Influence of growth condition on the production of a bacteriocin, pediocin AcH by Pediococcus acidilactici H. Appl. Enuiron. Microbial. 57, 1265-1267
  2. Chang, J. Y., H. H. Lee, I. C. Kim, and H. C. Chang. 2001. Characterization of bacteriocin produced by Bacillus licheniformis cy2. J. Korean Soc. Food Sci. Nutr. 30, 410-414
  3. Cho, J. S., S. J. Jung, Y. M. Kim, and U. H. Chun. 1994. Detection of the bacteriocin from lactic acid bacteria involved in kimchi fermentation. Kor. J. Appl. Microbiol. Biotechnol. 22, 700-706
  4. Cherif, A. H. Ouzari, D. Daffonchio, H. Cherif, K. B. Slama, A. Hassen, S. Jaoua, and A. Boudabous. 2001. Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32, 243-247 https://doi.org/10.1046/j.1472-765X.2001.00898.x
  5. Daeschel, M. A. and M. C. Mckenney. 1990. Bactericidal activity of Lactobacillus plantarum C11. Food Microbiol. 7, 91-98 https://doi.org/10.1016/0740-0020(90)90014-9
  6. Kojic, M., J. Svircevic, and A. Banna. 1991. Bacteriocin producing strain of Lactococcus lactis susbsp diacitilactis S50. Appl. Environ. Microbiol. 57, 1853-1837
  7. Klaenhammer, T. R. 1993. Genetics of bacteriocin produced by lactic acid bacteria. FEMS Microbiol. 12, 39-86 https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  8. Kim, H. T., J. Y. Park, G. G. Lee, and J. H. Kim. 2003. Isolation of a bacteriocin-producing Lactobacillus plantarum strain from Kimchi. Food Sci. Biotechnol. 12, 166-170
  9. Kim, H. T., J. Y. Park, G. G. Lee, and J. H. Kim. 2004. Isolation of a bacteriocin-producing Lactobacillus sakei strain from Kimchi. J. Korean Soc. Food Sci. Nutr. 33, 560-565 https://doi.org/10.3746/jkfn.2004.33.3.560
  10. Lee, N. K., H. W. Kim, H. I. Chang, C. W. Yun, S. W. Kim, C. W. Kang, and H. D. Paik. 2006. Probiotic properties of Lactobacillus plantarum NK81 isolated from Jeotgal, a Korean fermented food. Food Sci. Biotechnology 15, 227-213
  11. Lee, H. J., C. S. Park, Y. J. Joo, S. H. Kim, J. H. Yoon, Y. H. Park, I. K. Hwang, J. S. Ahn, and T. I. Mheen. 1999. Identification and characterization of bacteriocin-producing lactic acid bacteria isolated from Kimchi. J. Microbiol. Biotechnol. 9, 282-291 https://doi.org/10.1016/S1389-1723(99)80194-7
  12. Lee, H. J., Y. J. Joo, C. S. Park, S. H. Kim, I. K. Hwang, J. S. Ahn, and T. I. Mheen. 1999. Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from Kimchi. J. Biosciengen and Bioengineering 88, 153-159 https://doi.org/10.1016/S1389-1723(99)80194-7
  13. Lim, S. M. and D. S. Im. 2007. Bactericidal effect of bacteriocin of Lactobacillus plantarum K11 isolated from Dongchimi on Escherichia coli O157. J. Food Hyg. Safety 22, 151-158
  14. Liu, W. and J. N. Hansen. 1990. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol. 56, 2551-2558
  15. Lee, J. G., Go. J. Lee, and S. M. Lim. 2005. Partial purification of bacteriocin produced by Enterococcus faecium MJ-14 isolated from Meju. J. Food Hyg. Safety 20, 211-216
  16. Mehta, A. M. K. A. Patel, and P. J. Dave. 1983. Purification and properties of the inhibitory protein isolated from Lactobacillus acidophilus AC1. Microbios. 38, 78-81
  17. Naclerio, G., E. Ricca, M. Sacco, and De. M. Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59, 4313-4316
  18. Paik, H. D. S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. J. Ind. Microbiol. Biotechnol. 19, 294-298 https://doi.org/10.1038/sj.jim.2900462
  19. PaiK, H. D., K. M. Koo, J. G. Kim, and N. K. Lee. 2003. Optimization for lacticin SA72 production by Lactococcus lactis SA72 isolated from Jeotgal. Kor. J. Microbiol. Biotechnol. 31, 46-50
  20. Paik, H. D. 1996. Bacteriocins: assay, biochemistry, and mode of action. J. Food Sci. Nutr. 1, 269-277
  21. Susan, F. B. and T. R. Klaenhamer. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45, 1801-1815
  22. Sahl, H. G. 1991. Pore formation in bacterial membranes by cationic lantibiotics, pp.347-358, In Jung, G. and H. G. Sahl (eds.), Nisin and Novel lantibiotics. ESCOM Science Publishers B.V., Leiden
  23. Vaughan, E. E. C. Daly, and G. F. Fitzgerald. 1992. Identification and characterzation of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J. Appl. Bacteriol. 73, 299-308 https://doi.org/10.1111/j.1365-2672.1992.tb04981.x
  24. Yang, E. J., J. Y. Chang, H. J. Lee, J. H. Kim, D. K. Chung, J. H. Lee, and H. C. Chang. 2002. Characterization of the antagonistic activity against Lactobacillus plantarum and induction of bacteriocin production. Korean J. Food Sci. Technol. 34, 311-318

피인용 문헌

  1. Isolation and Characterization of Phosphorus Accumulating Microorganisms under Liquid Fertilization of Swine Slurry vol.20, pp.2, 2014, https://doi.org/10.11109/JAES.2014.20.2.77
  2. Purification and Characterization of the Bacteriocin Produced by Lactococcus sp. KD 28 Isolated from Kimchi vol.25, pp.2, 2015, https://doi.org/10.5352/JLS.2015.25.2.180
  3. A Bacterial Strain Identified as Bacillus licheniformis using Vitek 2 Effectively Reduced NH3 Emission from Swine Manure vol.21, pp.3, 2015, https://doi.org/10.11109/JAES.2015.21.3.83