DOI QR코드

DOI QR Code

Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계

Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1

  • 고인정 (KAIST 부설 한국과학영재학교) ;
  • 오정일 (부산대학교 미생물학과)
  • 발행 : 2009.07.30

초록

호흡전자전달계의 cytochrome bc$_1$ complex 또는 cytochrome c oxidase가 기능을 하지 않는 Rhodobacter sphaeroides mutant 내에서 pyridine nucleotide[NAD(P)H와 NAD(P)$^+$]의 농도와 redox 상태는 wild type과 비교할 때 큰 변화가 없었다. 높은 산소분압 조건에서 키운 Rhodobacter sphaeroides cbb$_3$ oxidase mutant 내에서 PrrBA two-component system에 의해서 조절되는 puf 오페론의 발현은 pyridine nucleotide나 전자전달계의 ubiquinone/ubiquinol pool의 redox 상태의 변화에 의해 유도된 것이 아니다. R. sphaeroides cytochrome bc$_1$ complex mutant를 이용하여 광합성기구 합성에 대한 cbb$_3$ cytochrome c oxidase의 억제 효과는 ubiquinone/ubiquinol pool의 redox 변화에 의해 간접적으로 일어나는 것이 아님을 증명하였다.

The homeostasis of the pyridine nucleotide pool [NAD(P)H and NAD(P)$^+$] is maintained in Rhodobacter sphaeroides mutant strains defective in the cytochrome bci complex or the cytochrome c oxidases in terms of its concentration and redox state. Aerobic derepression of the puf operon, which is under the control of the PrrBA two-component system, in the CBB3 mutant strain of R. sphaeroides was shown to be not the result of changes in the redox state of the pyridine nucleotides and the ubiquinone/ubiquinol pool. Using the bc$_1$ complex knock-out mutant strain of R. sphaeroides, we clearly demonstrated that the inhibitory effect of cbb$_3$, oxidase on spectral complex formation is not caused indirectly by the redox change of the ubiquinone/ubiquinol pool.

키워드

참고문헌

  1. Badrick, A. C., A. J. Hamilton, P. V. Bernhardt, C. F. Jones, U. Kappler, M. P. Jennings, and A. G. McEwan. 2007. PrrC, a Sco homologue from Rhodobacter sphaeroides, possesses thiol- disulfide oxidoreductase activity. FEBS Lett. 581, 4663-4667 https://doi.org/10.1016/j.febslet.2007.08.058
  2. Comolli, J.C., A. J. Carl, C. Hall, and T. Donohue. 2002. Transcriptional activation of the Rhodobacter sphaeroides cytochrome $c_{2}$ gene P2 promoter by the response regulator PrrA. J. Bacteriol. 184, 390-399 https://doi.org/10.1128/JB.184.2.390-399.2002
  3. Cooley, J. W. and W. F. J. Vermaas. 2001. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC6803: capacity comparisons and physiological function. J. Bacteriol. 183, 4251-4258 https://doi.org/10.1128/JB.183.14.4251-4258.2001
  4. Davis, J., T. J. Donohue, and S. Kaplan. 1988. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J. Bacteriol. 170, 320-329
  5. Dickinson, E. K., D. L. Adams, E. A. Schon, and D. M. Glerum. 2000. A human SCO2 mutation helps define the role of Sco1p in the cytochrome oxidase assembly pathway. J. Biol. Chem. 275, 26780-26785
  6. Eraso, J. M. and S. Kaplan. 1994. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32-43
  7. Eraso, J. M. and S. Kaplan. 1995. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J. Bacteriol. 177, 2695-2706
  8. Eraso, J. M. and S. Kaplan. 1996. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 178, 7037-7046
  9. Eraso, J. M. and S. Kaplan. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry 39, 2052-2062 https://doi.org/10.1021/bi9923858
  10. Eraso, J. M., J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton, and S. Kaplan. 2008. Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteom analysis. J. Bacteriol. 190, 4831-4848 https://doi.org/10.1128/JB.00301-08
  11. Garcia-Horsman, J. A., E. Berry, J. P. Shapleigh, J. O. Alben, and R. B. Gennis. 1994. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry 33, 3113-3119 https://doi.org/10.1021/bi00176a046
  12. Gomelsky, M. and S. Kaplan. 1995. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 177, 4609-4618
  13. Gomelsky, M. and S. Kaplan. 1995. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J. Bacteriol. 177, 1634-1637
  14. Hosler, J. P., J. Fetter, M. M. Tecklenburg, M. Espe, C. Lerma, and S. Ferguson-Miller. 1992. Cytochrome $aa_{3}$ of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. J. Biol. Chem. 267, 24264-24272
  15. Jessee, J. 1986. New subcloning efficiency competent cells: >1×$10^{6} $transformants/ug. Focus 8, 9
  16. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  17. Kiley, P. J. and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol. Rev. 52, 50-69
  18. Kim, Y. J., I. J. Ko, J. M. Lee, H. Y. Kang, Y. M. Kim, S. Kaplan, and J. I. Oh. 2007. Dominant role of the $cbb_{3}$ oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 189, 5617-5625 https://doi.org/10.1128/JB.00443-07
  19. Kobach, M. E., R. W. Phillips, P. H. Elzer, R. M. Roop, and K. M. Peterson. 1994. pBBR1MCS: a broad-host range cloning vector. BioTechniques 16, 800-802
  20. Mouncey, N. J., E. Gak., M. Chodhary, J. I. Oh, and S. Kaplan. 2000. Respiratory pathways of Rhodobacter sphaeroides 2.4.1: identification and characterization of genes encoding quinol oxidases. FEMS Microbiol. Lett. 192, 205-210 https://doi.org/10.1111/j.1574-6968.2000.tb09383.x
  21. O'Gara, J. P. and S. Kaplan. 1997. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 179, 1951-1961
  22. Oh, J. I. and S. Kaplan. 1999. The $cbb_{3}$ terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696 https://doi.org/10.1021/bi9825100
  23. Oh, J. I., J. M. Eraso, and S. Kaplan. 2000. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081-3087 https://doi.org/10.1128/JB.182.11.3081-3087.2000
  24. Oh, J. I. and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBO J. 19, 4237-4247 https://doi.org/10.1093/emboj/19.16.4237
  25. Oh, J. I. and S. Kaplan. 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116-1123 https://doi.org/10.1111/j.1365-2958.2001.02299.x
  26. Oh, J. I., I. J. Ko, and S. Kaplan. 2001. The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J. Bacteriol. 183, 6807-6814 https://doi.org/10.1128/JB.183.23.6807-6814.2001
  27. Oh, J. I. and S. Kaplan. 2002. Oxygen adaptation: the role of the CcoQ subunit of the $cbb_{3}$ cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J. Biol. Chem. 277, 16220-16228 https://doi.org/10.1074/jbc.M200198200
  28. Oh, J. I., I. J. Ko, and S. Kaplan. 2004. Reconstitution of the Rhodobacter sphaeroides $cbb_{3}$-PrrBA signal transduction pathway in vitro. Biochemistry. 43, 7915-7923 https://doi.org/10.1021/bi0496440
  29. Oh, J. I. 2006. Effect of mutations of five conserved histidine residues in the catalytic subunit of the $cbb_{3}$ cytochrome c oxidase in its function. J. Microbiol. 44, 284-292
  30. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  31. Shapleigh, J. P., J. J. Hill, J. O., Alben, and R. B. Gennis. 1992. Spectroscopic and genetic evidence for two heme-Cu-containing oxidasesin Rhodobacter sphaeroides. J. Bacteriol. 174, 2338-2343
  32. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/ Technol. 1, 784-791 https://doi.org/10.1038/nbt1183-784
  33. Swem, L. R., X. Gong, C. A. Yu, and C. E. Bauer. 2006. Identification of a ubiquinone binding site that affects autophosphorylation of the sensor kinase RegB. J. Biol. Chem. 281, 6768-6775 https://doi.org/10.1074/jbc.M509687200
  34. van Den Bergen, C. W. M., A. M. Wagner, K. Klab, and A. L. Moore. 1994. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria: interplay between quinol-oxidizing and quinone-reducing pathways. Eur. J. Biochem. 226, 1071-1078 https://doi.org/10.1111/j.1432-1033.1994.01071.x
  35. van Neil, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacterial Rev. 8, 1-118
  36. Zeilstra-Ryalls, J. H. and S. Kaplan. 1998. Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 180, 1496-1503