DOI QR코드

DOI QR Code

낙동벼, 2개의 promoter를 각각 삽입한 유전자변형 계통과 잡초성벼(Oryza sativa)인공수정 한 후 다음세대인 F1, F2, F3의 화분활력 평가

Evaluation of Pollen Viability of Nakdongbyeo, Two Transgenic Rice Lines, Its Hybrids with Weedy Rice, and Subsequent Selfed Progenies: F2 and F3

  • 기미어 시다람 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 손은영 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 신동현 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 이인중 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김길웅 (경북대학교 농업생명과학대학 응용생명과학부)
  • Ghimire, Sita Ram (Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Sohn, Eun-Young (Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Shin, Dong-Hyun (Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, In-Jung (Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kim, Kil-Ung (Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 발행 : 2009.07.30

초록

본 연구는 비유전자변형 계통(낙동벼)과 2개의 다른 Promoter (aize ubiquitin과 abscisic acid)를 각각 삽입한유전자변형 벼와 abscisic acid promoter이용한 유전자변형 계통을 잡초성벼(Oryza sativa)와 인공수정 한 후 다음세대인 F$_1$, F$_2$, F$_3$의 활분활력, 형태형성 생장차이를 비교하여 평가하였다. 화분이 열개된 후 3-{4,5 dimethylthiazoly1-2}-2-,5-diphynly monotetrazolium bromide (MTT)반응을 살펴본 결과, Nakdongbeyo에서 86%, ABC-pro-moter 이용한 유전자변형 벼에서 75%, maize ubiquitin promoter이용한 유전자변형 벼에서 62%,F$_1$에서 68%, F$_2$에서 79% 및 F$_3$에서 78%의 각각 최대 화분활력을 보여주었다. 유전자변형 계통과 잡초성벼와의 교잡종의 F$_1$, F$_2$, F$_3$ 세대간의 화분활력을 비교하였을 때 화분 열개된 후 20분 까지는 유의한 차이를 보이지 않았으나, 40분에서 90분 사이에서는 F$_3$의 화분활력이 다른 두 세대 F$_1$, F$_2$보다 높게 나타났다. 화분을 열개된 90분 후 F$_3$ 세대 에서 최대 화분 활력이 36.2% 이었고 F$_2$ 세대 에서는 화분 활력이 최소 3.5% 보였다. 따라서 화분에 의해 벼의 유전자가 다른 계통으로 전이되는가를 조사하기 위하여 연차실험을 수행하였는데, 결론적으로 두 유전자변형 계통으로부터 잡초성벼로 유전자가 전이될 위험성이 나타날 것으로 보였다.

This experiment was conducted to evaluate pollen viability of Nakdongbyeo, transgenic rice lines, an F$_1$ hybrid from a cross between Milyang weedy rice and ABC-promoter transgenic rice line containing basta-resistant (bar) gene and subsequent selfed progenies, F$_2$ and F$_3$. The reaction of pollen with 3-{4,5 dimethylthiazolyl-2}-2,5-diphenyl monotetrazolium bromide (MTT) as a staining chemical immediately after pollen shedding showed maximum pollen viability of 86% in Nakdongbeyo, 75% in ABC-promoter transgenic rice line, 62% in ubiquitin-promoter transgenic line, 68% in F$_1$, 79% in F$_2$ and 78% in F$_3$. Viability gradually declined during subsequent observations at 20-minute intervals. However, there was a drastic decline in pollen viability after 40 minutes of pollen shedding. The mean difference of pollen viability among rice lines and time was highly significant, indicating significantly different pollen viabilities at different time intervals. Maximum viability of 36.2% was observed in F$_3$ and minimum viability of 3.5% was found in F$_2$ at 90 min after pollen shedding. Results of this experiment on pollen viability and longevity elucidate potential risks of pollen-mediated flow of herbicide-resistant gene from transgenic rice lines and possible integration of it into the weedy rice population.

키워드

참고문헌

  1. Dafni, A. and D. Firmage. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222, 113-132 https://doi.org/10.1007/BF00984098
  2. Eckardt, N. A. 2005. VANGUARD1-At the forefront of pollen tube growth. The Plant Cell 17, 327-329 https://doi.org/10.1105/tpc.104.170210
  3. Garg, A. K., J. K. Kim, T. G. Owens, A. P. Ranwala, Y. D. Choi, L. V. Kochian, and R. J. Wu. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99, 15898-15903 https://doi.org/10.1073/pnas.252637799
  4. Ghimire, S. R., E. Y. Sohn, D. H. Shin, I. J. Lee, and K. U. Kim. 2008. Genetic characteristics of progeny of the hybrids between a glufosinate resistant transgenic rice and weedy rice (Oryza sativa). Korean Journal of Weed Science 29, 24-31
  5. Hauser, E. J. P. and J. H. Morrison. 1964. The cytochemical reduction of nitroblue tetrazolium as an index of pollen viability. American Journal of Botany 51, 748-752 https://doi.org/10.2307/2440215
  6. Heslop-Harrison, J. and Y. Heslop-Harrison. 1970. Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technology 45, 115-120 https://doi.org/10.1016/S0953-7562(09)80473-5
  7. Heslop-Harrison, J., Y. Heslop-Harrison, and K. R. Shivanna. 1984. The evaluation of pollen quality and a further appraisal of the flurochromatic (FCR) test procedure. Theor. Appl. Genet. 67, 367-376 https://doi.org/10.1007/BF00272876
  8. Jang, I. C., S. J. Oh, J. S. Seo, W. B. Choi, I. S. Sang, C. H. Kim, Y. S. Kim, H. S. Seo, Y.D. Choi, B. H. Nahm, and J. K. Kim. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131, 516-524 https://doi.org/10.1104/pp.007237
  9. Khatun, S. and T. J. Flowers. 1995. The estimation of pollen viability in rice. Annals of Botany 46, 151-154
  10. Kim, K. U., J. H. Lee, I. J. Lee, D. H. Shin, and S. U. Kim. 2004. Hybridization of LM (Living modified) rice with weedy rices. Korean Journal of Weed Science 24, 51-56
  11. Luna, V. S., M. J. Figueroa, M. B. Baltazar, L. R. Gomez, R. Townsend, and J. B. Schoper. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science 41, 1551-1557 https://doi.org/10.2135/cropsci2001.4151551x
  12. Norton, J. D. 1966. Testing of plum pollen viability with tetrazolium salts. Journal of American society for Horticultural Science 89, 132-134
  13. Pacini, E., G. G. Franchi, M. Lisci, and M. Nepi. 1997. Pollen viability related to type of pollination in six angiosperm species. Annals of Botany 80, 83-87 https://doi.org/10.1006/anbo.1997.0421
  14. Pline, W. A., K. L. Edmisten, T. Oliver, J. W. Wilcut, R. Wells, and N. S. Allen. 2002. Use of digital image analysis, viability stains, and germination assays to estimate conventional and glyphosate-resistant cotton pollen viability. Crop Science 42, 2193-2200 https://doi.org/10.2135/cropsci2002.2193
  15. Rodriguez-Riano, T. and A. Dafni. 2000. A new procedure to assess pollen viability. Sexual Plant Reproduction 12, 241-244 https://doi.org/10.1007/s004970050008
  16. Satake, T. and M. Shibata. 1992. Male sterility caused by cooling treatment at the microspore stage stage in rice plants. XXXI. Four components participating in fertilization. Japanese Journal of Crop Science 61, 454-462 https://doi.org/10.1626/jcs.61.454
  17. Shivanna, K. R., H. F. Linsken, and M. Cresti. 1991. Pollen viability and vigor. Theor. Appl. Genet. 81, 38-42
  18. Snow, A. 2002. Transgenic crops - why gene flow matters. Nature Biotechnology 20, 542 https://doi.org/10.1038/nbt0602
  19. Song, Z. P., B. R. Lu, Y. G. Zhu, and J. K. Chen. 2002. Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytologist 153, 289-296 https://doi.org/10.1046/j.0028-646X.2001.00319.x
  20. Song, Z. P., B. R. Lu, and J. K. Chen. 2001. A study of pollen viability and longevity in Oryza rufipogon, O. sativa, and their hybrids. International Rice Research Newsletter 26, 31-32
  21. Steele, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics: A biometrical approach. Second edition. McGraw-Hill Publishing Company, New York
  22. Tuinstra, M. R. and J. Wedel. 2000. Estimation of pollen viability in grain sorghum. Crop Science 40, 968-970 https://doi.org/10.2135/cropsci2000.404968x
  23. Wang, Z. Y., Y. X. Ge, M. Scott, and G. Spangenberg. 2004. Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (poaceae) plants. American Journal of Botany 91, 523-530 https://doi.org/10.3732/ajb.91.4.523
  24. Zhang, N. Y., S. Linscombe, and J. Oard. 2003. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica 130, 35-45 https://doi.org/10.1023/A:1022371104679