DOI QR코드

DOI QR Code

Characterization of Methylene Blue Decomposition on Fe-ACF/TiO2 Photocatalysts Under UV Irradiation with or Without H2O2

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.09.27

Abstract

The photocatalysts of Fe-ACF/$TiO_2$ compositeswere prepared by the sol-gel method and characterized by BET, XRD, SEM, and EDX. It showed that the BET surface area was related to adsorption capacity for each composite. The SEM results showed that ferric compound and titanium dioxide were distributed on the surfaces of ACF. The XRD results showed that Fe-ACF/$TiO_2$ composite only contained an anatase structure with a Fe mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in Fe-ACF/$TiO_2$ composites. From the photocataytic degradation effect, $TiO_2$ on activated carbon fiber surface modified with Fe (Fe-ACF/$TiO_2$) could work in the photo-Fenton process. It was revealed that the photo-Fenton reaction gives considerable photocatalytic ability for the decomposition of methylene blue (MB) compared to non-treated ACF/$TiO_2$, and the photo-Fenton reaction was improved by the addition of $H_2O_2$. It was proved that the decomposition of MB under UV (365 nm) irradiation in the presence of $H_2O_2$ predominantly accelerated the oxidation of $Fe^{2+}$ to $Fe^{3+}$ and produced a high concentration of OH radicals.

Keywords

References

  1. J. W. Shi, Chem. Engi J., 151, 241 (2009) https://doi.org/10.1016/j.cej.2009.02.034
  2. Y. N. Hou, J. H. Qu, X. Zhao, P. J. Lei, D. J. Wan, and C. P. Huang, Sci. Total Environ., 407, 2431 (2009) https://doi.org/10.1016/j.scitotenv.2008.12.055
  3. D. Q. Mo, and D. Q. Ye, Sur & Coatings Technol., 203, 1154 (2009) https://doi.org/10.1016/j.surfcoat.2008.10.007
  4. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee, and W. B. Ko, J. Indust. Engin. Chem., 15, 190 (2009) https://doi.org/10.1016/j.jiec.2008.09.019
  5. L. F. Liu, G. H. Zheng and F. L. Yang, Chem. Engi. J., doi:10.1016/j.cej.2009.04.008
  6. W. C. Oh and M. L. Chen, J. Ceram. Process. Res., 9(2), 100 (2008)
  7. M. L. Chen, C. S Lim, and W. C. Oh, Carbon let., 8(3), 177 (2007) https://doi.org/10.5714/CL.2007.8.3.177
  8. M. Pera-Titus, V. Garcla-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, Appl. Catal. B: Environ., 47, 219 (2004) https://doi.org/10.1016/j.apcatb.2003.09.010
  9. M. Neamtu, A. Yediler, I. Siminiceanu, and A. Kettrup, J. Photochem. and Photobiol A: Chem., 161, 87 (2003) https://doi.org/10.1016/S1010-6030(03)00270-3
  10. M. I. Franch, J. A. Ayllón, J. Peral, and X. Domenech, Appl. Catal. B: Environ., 50, 89 (2004) https://doi.org/10.1016/j.apcatb.2003.12.024
  11. H. Fallmann, T. Krutzler, R. Bauer, S. Malato, and J. Blanco, Catal. Today., 54, 309 (1999) https://doi.org/10.1016/S0920-5861(99)00192-3
  12. R. Bauer, G. Waldner, H. Fallmann, S. Hager , M. Klare, T. Krutzler, S. Malato, and P. Maletzky, Catal, Today, 53, 131 (1999) https://doi.org/10.1016/S0920-5861(99)00108-X
  13. J. H. Carey, J. Lawrence, and H. M. Tosine, Bull. Environ. Contam. Toxicol., 16, 697 (1976) https://doi.org/10.1007/BF01685575
  14. V. A. Nadtochenko, A. G. Rincon, S.E. Stanca, and J. Kiwi, J. Photochem. Photobiol. A: Chem., 169, 131 (2005) https://doi.org/10.1016/j.jphotochem.2004.06.011
  15. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C., 1, 1 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
  16. B. Tryba, A. W. Morawski, M. Inagaki, and M. Toyoda, Chemosphere, 64, 1225 (2006) https://doi.org/10.1016/S1389-5567(00)00002-2
  17. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J. M. Herrmann, J. Photochem and Photobiology A: Chem., 158, 27 (2003) https://doi.org/10.1016/S1010-6030(03)00016-9
  18. M. Carrier, N. Perol, J. M. Herrmann, C. Bordes, S. Horikoshi, J. O. Paisse, R. Baudot and C. Guillard, Appl. Cata.B: Environ., 65, 11 (2006) https://doi.org/10.1016/j.apcatb.2005.11.014
  19. B. Tryba, A. W. Morawski, M. Inagaki, and M. Toyoda, Appl. Catal. B: Environ., 63, 215 (2006) https://doi.org/10.1016/j.apcatb.2005.09.011
  20. M. Pera-Titus, V. Garcia-Molina, M. A. Ban˜os, J. Gime´nez, and S. Espluga, Appl. Catal. B: Environ., 47, 219 (2004) https://doi.org/10.1016/j.apcatb.2005.09.011
  21. F. He, L. Lei,. J., Zhejiang, Univ. Sci., 5, 198. (2004) https://doi.org/10.1631/jzus.2004.0198
  22. Y. G. Go, F. J. Zhang, M. L. Chen, and W. C. Oh, J. Mater. Res., 19(3), 142 (2009)
  23. J. W. Shi, J. T. Zheng, P. Wu and X. J. Ji, Catal. Communications., 9. 1846-C1850. (2008) https://doi.org/10.1016/j.catcom.2008.02.018
  24. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., DOI: 10.3740/MRSK.2008.18.9.000
  25. W. D Wang, P. Serp, P. Kalck and J. L. Faria, J. Mole. Catal. A: Chem., 235, 194 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  26. W. C. Oh, and M. L. Chen, J. Ceram. Proc. Res., 8, 316 (2007)
  27. W. C. Oh, S. B. Han, and J. S. Bae, Analytical Science & Technol., 20(4), 279 (2007)
  28. D. C. Hurum, K. A. Gray, T. Rajh, and M. C. Thurnauer, J. Phys. Chem. B., 109, 977 (2005) https://doi.org/10.1021/jp045395d
  29. C. G. Silva and J. L. Faria, J. Molecular Cata. A: Chem., 305, 147 (2009) https://doi.org/10.1016/j.molcata.2008.12.015
  30. S. Chaianansutcharit, O. Mekasuwandumrong, and P. Praserthdam, Cer. International., 33, 697 (2007) https://doi.org/10.1016/j.ceramint.2005.12.013
  31. K. Hayashi, W. Sakamoto, and T. Yogo, J. Magnetism and Magnetic Mater., 321, 450 (2009) https://doi.org/10.1016/j.jmmm.2008.10.004
  32. W. C. Hung, Y. C. Chen, H. Chu, and T. K. Tseng, Appl.Sur. Sci., 255, 2205 (2008) https://doi.org/10.1016/j.apsusc.2008.07.079
  33. B. Tryba, J. Hazar. Mat., 151, 623 (2008) https://doi.org/10.1016/j.jhazmat.2007.06.034

Cited by

  1. NH3 and H2S Removal Characteristics on Spherical Carbons: Synergistic Effect between Activated Carbon and Zeolite Composites vol.26, pp.12, 2016, https://doi.org/10.3740/MRSK.2016.26.12.726