DOI QR코드

DOI QR Code

Fabrication and Characterization of (1-x)BiFeO3-xBaTiO3 Ceramics Prepared by a Solid State Reaction Method

  • Chandarak, S. (School of Ceramic Engineering, Suranaree University of Technology) ;
  • Unruan, M. (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Sareein, T. (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Ngamjarurojana, A. (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Maensiri, S. (Department of Physics, Faculty of Science, Khon Kaen University) ;
  • Laoratanakul, P. (National Metal and Materials Technology Center (MTEC)) ;
  • Ananta, S. (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Yimnirun, R. (School of Physics, Institute of Science, Suranaree University of Technology)
  • Published : 2009.09.30

Abstract

In this study, BiFe$O_3$-BaTi$O_3$ ceramics have been fabricated by a solid-state reaction method. The effects of BaTi$O_3$ content in the (1-x)BiFe$O_3$-xBaTi$O_3$ (x = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5) system on crystal structure and magnetic, dielectric, and ferroelectric properties were investigated. Perovskite BiFe$O_3$ was stabilized through the formation of a solid solution with BaTi$O_3$. Rhombohedrally distorted structure (1-x)BiFe$O_3$-xBaTi$O_3$ ceramics showed strong ferromagnetism at x = 0.5. Dielectric and ferroelectric properties of the BiFe$O_3$-BaTi$O_3$ system also changed significantly upon addition of BaTi$O_3$. It was found that the maximum dielectric and ferroelectric properties were exhibited in the (1-x)BiFe$O_3$-xBaTi$O_3$ system at x = 0.25. This suggested the morphotropic phase boundary (MPB) with the coexistence of both rhombohedral and cubic phases of the (1-x)BiFe$O_3$-xBaTi$O_3$ system at x = 0.25.

Keywords

References

  1. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759-65 (2006) https://doi.org/10.1038/nature05023
  2. N. G. Kim, Y. S. Koo, and J. H. Jung, J. Magnetics 11, 164 (2006) https://doi.org/10.4283/JMAG.2006.11.4.164
  3. J. Chang, H. M. Jang, and S. K. Kim, J. Magnetics 11, 108 (2006) https://doi.org/10.4283/JMAG.2006.11.3.108
  4. S. V. Kiselev, R. P. Ozarov, and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1962)
  5. P. Fishetr, M. Polomska, S. Sosnowska, and M. Szymanski, J. Phys. C 13, 1931 (1980) https://doi.org/10.1088/0022-3719/13/10/012
  6. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B 46, 698 (1990) https://doi.org/10.1107/S0108768190006887
  7. I. Sosnowska, T. Peterlin-Newmaier, and E. Steichele, J. Phys. C 15, 4835 (1982) https://doi.org/10.1088/0022-3719/15/23/020
  8. G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982) https://doi.org/10.1070/PU1982v025n07ABEH004570
  9. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970) https://doi.org/10.1016/0038-1098(70)90262-0
  10. I. H. Ismailzade, R. M. Ismailov, A. I. Alekberov, and F. M. Salaev, Phys. Stat. Sol. (a) 68, K81 (1981) https://doi.org/10.1002/pssa.2210680160
  11. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys. 97, 093903 (2005) https://doi.org/10.1063/1.1881775
  12. M. H. Kumar, S.Srinath, G. S. Kumar, and S. V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998) https://doi.org/10.1016/S0304-8853(98)00167-X
  13. G. A. Gehring, Ferroelectrics 61, 275 (1994)

Cited by

  1. Ceramics vol.114, pp.1, 2010, https://doi.org/10.1080/10584587.2010.488192
  2. Multiferroic Ceramics vol.422, pp.1, 2011, https://doi.org/10.1080/00150193.2011.594772
  3. Synthesis and Magnetic Properties of $\hbox{BiFeO}_{3}$, ${(\hbox{BiFeO}_{3})}_{0.95}{(\hbox{BaTiO}_{3})}_{0.05}$, and $(\hbox{Bi}_{0.95}\hbox{Ba}_{0.05})(\hbox{Fe}_{0.95}\hbox{Ti}_{0.05})\hbox{O}_{3}$ Ceramics vol.47, pp.3, 2011, https://doi.org/10.1109/TMAG.2010.2103356
  4. vol.80, pp.4, 2011, https://doi.org/10.1143/JPSJ.80.043705
  5. Effect of Temperature on Ferroelectric Properties of Bismuth Ferrite-Barium Titanate vol.148, pp.1, 2013, https://doi.org/10.1080/10584587.2013.852027
  6. Local Structure of Magnetoelectric BiFeO3–BaTiO3 Ceramics Probed by Synchrotron X-Ray Absorption Spectroscopy vol.26, pp.2, 2013, https://doi.org/10.1007/s10948-012-1764-1
  7. Dielectric and multiferroic properties of 0.75BiFeO3–0.25BaTiO3 solid solution vol.25, pp.2, 2014, https://doi.org/10.1007/s10854-013-1661-9
  8. Studies on magnetoelectric coupling and magnetic properties of (1 − x)BiFeO3–xBaTiO3 solid solutions vol.26, pp.3, 2015, https://doi.org/10.1007/s10854-014-2557-z
  9. Ceramics by XAS Technique and Their Relevant Properties vol.98, pp.10, 2015, https://doi.org/10.1111/jace.13789
  10. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1436-3
  11. High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics vol.52, pp.1, 2017, https://doi.org/10.1007/s10853-016-0325-6
  12. Review: on rare-earth perovskite-type negative electrodes in nickel–hydride (Ni/H) secondary batteries vol.6, pp.2, 2017, https://doi.org/10.1007/s40243-017-0091-7
  13. Compositional dependence of hyperfine interactions and magnetoelectric coupling in (BiFeO3)x-(BaTiO3)1–x solid solutions vol.62, pp.2, 2017, https://doi.org/10.1515/nuka-2017-0016
  14. ceramics vol.534, pp.1, 2018, https://doi.org/10.1080/00150193.2018.1471952