DOI QR코드

DOI QR Code

Structural and Magnetic Properties of LaFeO3-BaTiO3 Solid Solutions

  • Ramana, E.Venkata (Department of Physics, Hankuk University of Foreign Studies) ;
  • Kwon, O-Ung (Department of Physics, Hankuk University of Foreign Studies) ;
  • Kim, Jin-I (Department of Physics, Hankuk University of Foreign Studies) ;
  • Jung, C.U. (Department of Physics, Hankuk University of Foreign Studies)
  • 발행 : 2009.09.30

초록

Polycrystalline samples of LaFe$O_3$-BaTi$O_3$ were synthesized to examine the structural and magnetic behavior. X-ray diffraction confirmed that the ceramics had tetragonal symmetry with less tetragonal strain (c/a) than BaTi$O_3$. The magnetic hysteresis measured at room temperature suggested that the magnetic nature deviates from that of the parent LaFe$O_3$, which has antiferromagentic with a G-type spin structure. Improved magnetic behavior of the solid solution compound might be due to the increase in the canting angle of the spin. The presence of oxygen vacancies and fluctuating Fe valence, arising from the substitution of $Ba^{2+}$ and $Ti^{4+}$ at the A- and B-sites of the lattice, might contribute to bulk magnetization. The temperature dependent magnetization indicated that magnetization was higher at low temperatures and showed a decreasing trend with increasing temperature to room temperature. The magnetic transition temperature of these samples was 665 K and 743 K for the mixed system and LaFe$O_3$, respectively.

키워드

참고문헌

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006) https://doi.org/10.1038/nature05023
  2. M. Bibes and A. Barthelemy, Nature Mater. 7, 425 (2008) https://doi.org/10.1038/nmat2189
  3. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Phys. Rev. B 76, 024116 (2007) https://doi.org/10.1103/PhysRevB.76.024116
  4. V. R. Palkar, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Phys. Rev. B. 69, 212102 (2004) https://doi.org/10.1103/PhysRevB.69.212102
  5. E. Venkata Ramana, B. V. B. Saradhi, S. V. Suryanarayana and T. Bhima Sankaram, Ferroelectrics 324, 55 (2005) https://doi.org/10.1080/00150190500323693
  6. S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007) https://doi.org/10.1038/nmat1804
  7. J. B. Goodenough and J. M. Longo, Landolt-Bornstein, New Series, edited by K.-H. Hellwedge and A. M. Hellwedge (Springer, Berlin), Group III, vol. 4, part a, Chap. 3, p.126, (1970) https://doi.org/10.1007/10201420_36
  8. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004) https://doi.org/10.1126/science.1103218
  9. J. I. Kim and C. U. Jung, J. Magnetics 13, 57 (2008) https://doi.org/10.4283/JMAG.2008.13.2.057
  10. Y. J. Chang, J. I. Kim, and C. U. Jung, J. Magnetics 13, 61 (2008) https://doi.org/10.4283/JMAG.2008.13.2.061
  11. R. D. Shannon, Acta. Cryst. A 32, 751 (1976) https://doi.org/10.1107/S0567739476001551
  12. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005) https://doi.org/10.1088/0022-3727/38/8/R01
  13. D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Appl. Phys. Lett. 88, 212907 (2006) https://doi.org/10.1063/1.2208266
  14. A. Singh and R. Chatterjee, Appl. Phys. Lett. 93, 182908 (2008) https://doi.org/10.1063/1.3012389

피인용 문헌

  1. -Doped BCZT Ceramics pp.18626300, 2018, https://doi.org/10.1002/pssa.201701023