Abstract
Introduction: In the mass spectrometry-based proteomics, biological samples are analyzed to identify proteins by mass spectrometer and database search. Database search is the process to select the best matches to the experimental mass spectra among the amino acid sequence database and we identify the protein as the matched sequence. The match score is defined to find the matches from the database and declare the highest scored hit as the most probable protein. According to the score definition, search result varies. In this study, the difference among search results of different search engines or different databases was investigated, in order to suggest a better way to identify more proteins with higher reliability. Materials and Methods: The protein extract of human mesenchymal stem cell was separated by several bands by one-dimensional electrophorysis. One-dimensional gel was excised one by one, digested by trypsin and analyzed by a mass spectrometer, FT LTQ. The tandem mass (MS/MS) spectra of peptide ions were applied to the database search of X!Tandem, Mascot and Sequest search engines with IPI human database and SwissProt database. The search result was filtered by several threshold probability values of the Trans-Proteomic Pipeline (TPP) of the Institute for Systems Biology. The analysis of the output which was generated from TPP was performed. Results and Discussion: For each MS/MS spectrum, the peptide sequences which were identified from different conditions such as search engines, threshold probability, and sequence database were compared. The main difference of peptide identification at high threshold probability was caused by not the difference of sequence database but the difference of the score. As the threshold probability decreases, the missed peptides appeared. Conversely, in the extremely high threshold level, we missed many true assignments. Conclusion and Prospects: The different identification result of the search engines was mainly caused by the different scoring algorithms. Usually in proteomics high-scored peptides are selected and low-scored peptides are discarded. Many of them are true negatives. By integrating the search results from different parameter and different search engines, the protein identification process can be improved.